Climate change has altered seasonal precipitation and temperature in a certain region. Unpredictable weather conditions have significantly increased the risk of climatic hazards, especially landslides. This paper studies the rainfall variables such as rainfall amount and rain days and their correlation towards landslide events in the capital city of Malaysia; the Federal Territory of Kuala Lumpur. Pearson correlation analysis found that the rain days variable has a higher significant positive correlation with landslide incidents compared to the rainfall amount variable. Only landslide incidents in the year 2010 show a significant negative correlation with rain days (r = -0.166). Both rainfall amount and rain days attributes in the years 2011, 2012, and 2015 show a significant positive correlation with landslide incidents reported. Meanwhile, landslide incidents reported in the years 2012 and 2013 show a significant negative correlation with rainfall amount but positively correlated with rain days attribute for both years. Further investigation using linear regression analysis also corresponds to the same result where landslide events increase by 0.039 for every unit of rain days but landslide incidents remain constant when there is an increase for every unit of rainfall. Therefore, rainfall amount was not a significant predictor in this study. Since land scarcity is the main issue in Kuala Lumpur, the results of this study help to provide insight on rainfall pattern and behavior for proper urbanization especially in changing climate condition.
Alnaimat, A., Choy, L. K., & Jaafar, M. (2017). An assessment of current practices on landslides risk management: a case of Kuala Lumpur territory. Geografia-Malaysian Journal of Society and Space, 13(2).
Althuwaynee, O. F., Pradhan, B., & Ahmad, N. (2015). Estimation of rainfall threshold and its use in landslide hazard mapping of Kuala Lumpur metropolitan and surrounding areas. Landslides, 12(5), 861-875.
Althuwaynee, O. F., Pradhan, B., & Lee, S. (2012). Application of an evidential belief function model in landslide susceptibility mapping. Computers & Geosciences, 44, 120-135.
BERNAMA. (2021). 58 kawasan perumahan berbukit di kl, selangor hadapi risiko tanah runtuh - semasa. MStar. https://www.mstar.com.my/lokal/semasa/2011/05/27/58-kawasan-perumahan-berbukit-di-kl-selangor-hadapi-risiko-tanah-runtuh.
Chen, W., Pourghasemi, H. R., Panahi, M., Kornejady, A., Wang, J., Xie, X., & Cao, S. (2017). Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology, 297, 69-85.
Comprehensive global database of earthquake-induced landslide events and their impacts. Available online: https://www.sciencebase.gov/catalog/item/5ec70f9d82ce476925eddc9e (accessed on 16 April 2021).
Dahal, D. K., Nawaratne, N. C., Rathnayaka, K. D., & Basiri, H. (2020). Rainfall-induced landslides: Susceptibility, hazard zonation and triggering mechanisms in the Mahaweli River Basin, Sri Lanka. Landslides, 17(2), 291-309.
Department of Statistics, Malaysia. Available online: https://www.dosm.gov.my/v1/index.php?r=column/ctheme&menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09&bul_id=MDMxdHZjWTk1SjFzTzNkRXYzcVZjdz09 (accessed on 22 April 2021.)
Dowling, C. A., & Santi, P. M. (2014). Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011. Natural hazards, 71(1), 203-227.
EM-DAT. (2015) - The OFDA/CRED - International Disaster Database http://www.emdat.be - Universite catholique de Louvain Brussels – Belgium
Feng, Z. Y., Lo, C. M., & Lin, Q. F. (2017). The characteristics of the seismic signals induced by landslides using a coupling of discrete element and finite difference methods. Landslides, 14(2), 661-674.
Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8), 2161-2181.
Hamid, S. B. A., Pradhan, B., Bui, D. T., Prakash, N., & Vu, T. T. (2023). Spatial assessment of landslide susceptibility using GIS-based machine learning models in the Cameron Highlands, Malaysia. Science of the Total Environment, 857, 159422.
Hong, H., Pradhan, B., Sameen, M. I., Chen, W., & Xu, C. (2017). Spatial prediction of rotational landslide using geographically weighted regression, logistic regression, and support vector machine models in Xing Guo area (China). Geomatics, Natural Hazards and Risk, 8(2), 1997-2022.
Huang, H., Yu, W., Yu, Q., & Zhang, G. (2013). Landslide surface deformation analysis based on geographically weighted regression model. EJGE, 18, 2693-2704.
IPCC. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [Solomon,. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.
IPCC. (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change.
Jabatan Kerja Raya. (2008). Appendix B: Landslide Inventory and Total Estimated Costs. National Slope Master Plan 2009- 2023.
Jabatan Pengairan dan Saliran Malaysia. (2018). Laporan Banjir Tahunan 2017/2018 (Annual Flood Report 2017/2018)
Kim, J., Ivanov, V. Y., & Fatichi, S. (2016). Environmental stochasticity controls soil erosion variability. Scientific reports, 6(1), 1-7.
Kirschbaum, D. B., Stanley, T., & Simmons, J. (2015). A dynamic landslide hazard assessment system for Central America and Hispaniola. Natural Hazards and Earth System Sciences, 15(10), 2257-2272.
Kirschbaum, D., Adler, R., Adler, D., Peters-Lidard, C., & Huffman, G. (2012). Global distribution of extreme precipitation and high-impact landslides in 2010 relative to previous years. Journal of Hydrometeorology, 13(5), 1536-1551.
Kouli, M., Loupasakis, C., Soupios, P., & Vallianatos, F. (2010). Landslide hazard zonation in high risk areas of Rethymno Prefecture, Crete Island, Greece. Natural hazards, 52(3), 599-621.
Kyriou, A., Nikolakopoulos, K., Koukouvelas, I., & Lampropoulou, P. (2021). Repeated UAV Campaigns, GNSS Measurements, GIS, and Petrographic Analyses for Landslide Mapping and Monitoring. Minerals, 11(3), 300.
Lee, M. L., Ng, K. Y., Huang, Y. F., & Li, W. C. (2014). Rainfall-induced landslides in Hulu Kelang area, Malaysia. Natural hazards, 70(1), 353-375.
Mahmud, A. R., Awad, A., & Billa, R. (2013). Landslide susceptibility mapping using averaged weightage score and GIS: A case study at Kuala Lumpur. Pertanika Journals, 473-48.
Majid, N., Taha, M., & Selamat, S. (2020). Historical landslide events in Malaysia 1993–2019. Indian J. Sci. Technol, 13, 3387-3399.
Muhamad, N., Lim, C. S., Reza, M. I. H., & Pereira, J. J. (2013). Input geologi untuk Sistem Sokongan Membuat Keputusan dalam pengurusan risiko bencana: Kajian kes Universiti Kebangsaan Malaysia (In Malay), Geological input for Decision Support System to manage the risk of disasters: A case study of Universiti Kebangsaan Malaysia.
Mukhlisin, M., Matlan, S. J., Ahlan, M. J., & Taha, M. R. (2015). Analysis of rainfall effect to slope stability in Ulu Klang, Malaysia. Jurnal Teknologi, 72(3).
Nhu, V. H., Mohammadi, A., Shahabi, H., Ahmad, B. B., Al-Ansari, N., Shirzadi, A., ... & Nguyen, H. (2020). Landslide detection and susceptibility modeling on cameron highlands (Malaysia): a comparison between random forest, logistic regression and logistic model tree algorithms. Forests, 11(8), 830.
Pall, P., Aina, T., Stone, D. A., Stott, P. A., Nozawa, T., Hilberts, A. G., ... & Allen, M. R. (2011). Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470(7334), 382-385.
Pradhan, B., Lee, S., & Buchroithner, M. F. (2010). A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses. Computers, Environment and Urban Systems, 34(3), 216-235.
Ruzman, N. S. L. N., & Rahman, H. A. (2015). The association between climatic factors and dengue fever: a study in Subang Jaya and Sepang, Selangor (Doctoral dissertation, Universiti Putra Malaysia).
Saadatkhah, N., Kassim, A., & Lee, M. L. (2014). Spatial patterns of precipitation, altitude and monsoon directions in Hulu Kelang area, Malaysia. EJGE C, 19, 521-534.
Skilodimou, H. D., Bathrellos, G. D., Koskeridou, E., Soukis, K., & Rozos, D. (2018). Physical and anthropogenic factors related to landslide activity in the Northern Peloponnese, Greece. Land, 7(3), 85.
Sulaiman, M. S., Nazaruddin, A., Salleh, N. M., Abidin, R. Z., Miniandi, N. D., & Yusoff, A. H. (2019). Landslide occurrences in Malaysia based on soil series and lithology factors. Int. J. Adv. Sci. Technol, 28, 1-26.
Triglia, C., Iadicola, P., & Guerricchio, A. (2022). A Rainfall Threshold-Based Approach for Regional Landslide Early Warning Systems: The Case of Southern Italy. Frontiers in Earth Science, 10.
Yusoff, Z. M., Raju, G., & Nahazanan, H. (2016). Static and Dynamic Behaviour of Kuala Lumpur Limestone. Malaysian Journal of Civil Engineering, 28.