In a world heavily reliant on fossil fuels, accounting for a staggering 80% of total energy consumption, the impending exhaustion of these finite resources within the next half-century looms as a dire global crisis. As a response to this impending challenge, biomass energy is emerging as a powerful alternative, harkening back to one of humanity's oldest sources of fuel. Amid this transition, Malaysia, a nation grappling with surging energy demands, holds significant promise in harnessing the latent energy within its abundant agricultural waste, primarily derived from the palm oil (Elaeis guineensis) industry and the extensive cultivation of paddy crops (Oryza sativa L). This study embarks on a critical examination of the potential that agricultural waste, chiefly composed of oil palm empty fruit bunch (EFB) and paddy rice husk (RH), holds in the form of biomass pellets, offering an environmentally friendly and sustainable energy solution. The primary focus of this research is to conduct a comprehensive comparative analysis between EFB and RH pellets, meticulously investigating key parameters such as moisture content, dry ash content, oil content, and ignition time. These parameters were scrutinized to discern which of the two pellet types exhibits greater potential as a viable source of biomass fuel within the Malaysian context. The results indicated that EFB pellets demonstrated superiority in terms of lower moisture content and faster ignition time, while RH pellets exhibited lower dry ash content and sustained combustion.
Al Naggar, M. M., Ashour, F., Ettouney, R. S., & El Rifai, M. A. (2017). Production of Biodiesel from Locally Available Spent Vegetable Oils. Renewable Energy and Sustainable Development, 3(2), 189–195. https://doi.org/10.21622/resd.2017.03.2.189
Al-Suhaibani, N., Seleiman, M. F., El-Hendawy, S., Abdella, K., Alotaibi, M., & Alderfasi, A. (2021). Integrative Effects of Treated Wastewater and Synthetic Fertilizers on Productivity, Energy Characteristics, and Elements Uptake of Potential Energy Crops in an Arid Agro-Ecosystem. Agronomy, 11(11), 2250. https://doi.org/10.3390/agronomy11112250
Basu, P. (2010). Biomass gasification and pyrolysis: Practical design and theory. In Biomass Gasification and Pyrolysis: Practical Design and Theory. https://doi.org/10.1016/C2009-0-20099-7
Bazarov, A., Kurakov, S. A., Bazarova, A. S., & Bashkuev, Y. B. (2022). Monitoring Soil Parameters Affecting the Forest Fuel Dryness. Research Square. https://doi.org/10.21203/rs.3.rs-1375667/v1
Briggs, J., Maier, D. E., Watkins, B., & Behnke, K. (1999). Effect of ingredients and processing parameters on pellet quality. Poultry Science, 78(10), 1464–1471. https://doi.org/10.1093/ps/78.10.1464
Capablo, J., Jensen, P. A., Pedersen, K. H., Hjuler, K., Nikolaisen, L., Backman, R., & Frandsen, F. (2009). Ash properties of alternative biomass. Energy and Fuels, 23(4). https://doi.org/10.1021/ef8008426
Demirbas, A. (2004). Combustion characteristics of different biomass fuels. In Progress in Energy and Combustion Science (Vol. 30, Issue 2). https://doi.org/10.1016/j.pecs.2003.10.004
Demirbas, A. (2007). Effects of Moisture and Hydrogen Content on the Heating Value of Fuels. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 29(7), 649–655. https://doi.org/10.1080/009083190957801
Demirhan, E., & Özbek, B. (2009). Microwave-Drying Characteristics Of Basil. Journal of Food Processing and Preservation, 34(3), 476–494. https://doi.org/10.1111/j.1745-4549.2008.00352.x
Gallastegui, M. C., Escapa, M., & Ansuategi, A. (2015). Green energy, Efficiency and climate change: An economic perspective. Green Energy and Technology, 164. https://doi.org/10.1007/978-3-319-03632-8_1
Hansen, U. E., & Ockwell, D. (2014). Learning and technological capability building in emerging economies: The case of the biomass power equipment industry in Malaysia. Technovation, 34(10), 617–630. https://doi.org/10.1016/j.technovation.2014.07.003
International Organization for Standardization. (2015). ISO 18122: 2015 Solid Biofuels—Determination of Ash Content. International Organization for Standardization Geneva, Switzerland.
ISO. (2015). ISO 18134-1:2015 Solid biofuels -- Determination of moisture content -- Oven dry method -- Part 1: Total moisture -- Reference method. Pub-ISO, 1.
Jackson, J., Turner, A., Mark, T., & Montross, M. (2016). Densification of biomass using a pilot scale flat ring roller pellet mill. Fuel Processing Technology, 148, 43–49. https://doi.org/10.1016/j.fuproc.2016.02.024
Kaniapan, S., Suhaimi, H., Hamdan, Y., & Pasupuleti, J. (2021). Experiment analysis on the characteristic of empty fruit bunch, palm kernel shell, coconut shell, and rice husk for biomass boiler fuel. Journal of Mechanical Engineering and Sciences, 15(3), 8300–8309. https://doi.org/10.15282/jmes.15.3.2021.08.0652
Klass, D. L. (1998). Biomass for renewable energy, fuels, and chemicals. Elsevier.
Lin, C. S. K., Pfaltzgraff, L. A., Herrero-Davila, L., Mubofu, E. B., Abderrahim, S., Clark, J. H., Koutinas, A. A., Kopsahelis, N., Stamatelatou, K., Dickson, F., Thankappan, S., Mohamed, Z., Brocklesby, R., & Luque, R. (2013). Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy & Environmental Science, 6(2), 426. https://doi.org/10.1039/c2ee23440h
Mani, S., Tabil, L. G., & Sokhansanj, S. (2006). Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass and Bioenergy, 30(7). https://doi.org/10.1016/j.biombioe.2005.01.004
Mansaray, K. G., & Ghaly, A. E. (1999). Determination of kinetic parameters of rice husks in oxygen using thermogravimetric analysis. Biomass and Bioenergy, 17(1). https://doi.org/10.1016/S0961-9534(99)00022-7
Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. In Progress in Energy and Combustion Science (Vol. 38, Issue 4). https://doi.org/10.1016/j.pecs.2012.02.002
Moraes, C. A., Fernandes, I. J., Calheiro, D., Kieling, A. G., Brehm, F. A., Rigon, M. R., Berwanger Filho, J. A., Schneider, I. A., & Osorio, E. (2014). Review of the rice production cycle: By-products and the main applications focusing on rice husk combustion and ash recycling. Waste Management & Research: The Journal for a Sustainable Circular Economy, 32(11), 1034–1048. https://doi.org/10.1177/0734242X14557379
Nussbaumer, T. (2003). Combustion and Co-combustion of Biomass: Fundamentals, Technologies, and Primary Measures for Emission Reduction. Energy and Fuels, 17(6). https://doi.org/10.1021/ef030031q
Oasmaa, A., Kuoppala, E., & Solantausta, Y. (2003). Fast Pyrolysis of Forestry Residue. 2. Physicochemical Composition of Product Liquid. Energy & Fuels, 17(2), 433–443. https://doi.org/10.1021/ef020206g
Patel, B. (2012). Biomass Characterization and its Use as Solid Fuel for Combustion. Iranica Journal of Energy & Environment. https://doi.org/10.5829/idosi.ijee.2012.03.02.0071
Pusparizkita, Y. M., Hidayatullah, A. F., Anwar, N. F., Junaidi, J., & Sudarno, S. (2022). Effect of drying duration on the water content of durian peel waste for bio pellet. IOP Conference Series: Earth and Environmental Science, 1098(1), 012052. https://doi.org/10.1088/1755-1315/1098/1/012052
Rashidi, N. A., Chai, Y. H., & Yusup, S. (2022). Biomass Energy in Malaysia: Current Scenario, Policies, and Implementation Challenges. In Bioenergy Research (Vol. 15, Issue 3). https://doi.org/10.1007/s12155-022-10392-7
Saeed, A. A. H., Yub Harun, N., Bilad, M. R., Afzal, M. T., Parvez, A. M., Roslan, F. A. S., Abdul Rahim, S., Vinayagam, V. D., & Afolabi, H. K. (2021). Moisture Content Impact on Properties of Briquette Produced from Rice Husk Waste. Sustainability, 13(6), 3069. https://doi.org/10.3390/su13063069
Seleiman, M. F., Santanen, A., Jaakkola, S., Ekholm, P., Hartikainen, H., Stoddard, F. L., & Mäkelä, P. S. A. (2013). Biomass yield and quality of bioenergy crops grown with synthetic and organic fertilizers. Biomass and Bioenergy, 59, 477–485. https://doi.org/10.1016/j.biombioe.2013.07.021
Shafie, S. M., Mahlia, T. M. I., Masjuki, H. H., & Andriyana, A. (2011). Current energy usage and sustainable energy in Malaysia: A review. In Renewable and Sustainable Energy Reviews (Vol. 15, Issue 9). https://doi.org/10.1016/j.rser.2011.07.113
Sheng, C., & Azevedo, J. L. T. (2005). Estimating the higher heating value of biomass fuels from basic analysis data. Biomass and Bioenergy, 28(5). https://doi.org/10.1016/j.biombioe.2004.11.008
Tumuluru, J. S., Wright, C. T., Hess, J. R., & Kenney, K. L. (2011). A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. In Biofuels, Bioproducts and Biorefining (Vol. 5, Issue 6). https://doi.org/10.1002/bbb.324
University of Kentucky. (2023). Ash Yield in Coal (Proximate Analysis), Kentucky Geological Survey, University of Kentucky. https://www.uky.edu/KGS/coal/coal-analyses-ash-yield.php
van Loo, S., & Koppejan, J. (2012). The handbook of biomass combustion and co-firing. In The Handbook of Biomass Combustion and Co-Firing. https://doi.org/10.4324/9781849773041
Weggler, B. A., Gruber, B., Teehan, P., Jaramillo, R., & Dorman, F. L. (2020). Inlets and sampling. In Separation Science and Technology (New York) (Vol. 12). https://doi.org/10.1016/B978-0-12-813745-1.00005-2
Williams, C. L., Westover, T. L., Emerson, R. M., Tumuluru, J. S., & Li, C. (2016). Sources of Biomass Feedstock Variability and the Potential Impact on Biofuels Production. BioEnergy Research, 9(1), 1–14. https://doi.org/10.1007/s12155-015-9694-y
Yadav, P., Priyanka, P., Kumar, D., Yadav, A., & Yadav, K. (2019). Bioenergy Crops: Recent Advances and Future Outlook (pp. 315–335). https://doi.org/10.1007/978-3-030-14463-0_12