International Journal of Academic Research in Business and Social Sciences

search-icon

Urban Resilience in the Face of Natural Hazards: Leveraging Machine Learning to Assess Landslide Risk in Kuala Lumpur, Malaysia

Open access
Landslides represent a significant threat to urban areas globally, causing substantial loss of life, property damage, and infrastructure disruption. The rapid urbanization witnessed in Kuala Lumpur, Malaysia since the 1970s has heightened the susceptibility to landslides, driven by factors such as vegetation removal and slope cutting. This study employs logistic regression (LR), a supervised machine learning technique, to develop a landslide model for Kuala Lumpur. LR is chosen for its simplicity and effectiveness in landslide susceptibility mapping. The methodology involves collecting and pre-processing landslide inventory data, extracting relevant factors from geospatial data, and applying LR to model the relationship between landslides and these factors. The resulting model is validated using an independent landslide dataset, demonstrating a good overall accuracy of 74.1%, with a sensitivity of 84.7% and specificity of 63.5%. The study concludes that LR serves as a valuable tool for landslide hazard assessment and risk management in Kuala Lumpur. The developed model offers guidance for land-use planning and infrastructure development, contributing to Sustainable Development Goal (SDG) 11 by fostering inclusive, safe, resilient, and sustainable cities. By mitigating landslide risk, the model contributes to the protection of lives and livelihoods, promotes sustainable urbanization, and enhances Kuala Lumpur's resilience to natural hazards.
Ahzan, A. (2022). 70 kes tanah runtuh direkodkan di Selangor sehingga kelmarin. Available online: https://selangorkini.my/2022/03/70-kes-tanah-runtuh-direkodkan-di-selangor-sehingga-kelmarin/ [16 Ogos 2022].
Akgun, H., & Turkmenoglu, A. (2004). Landslide susceptibility mapping for the Istanbul Metropolitan Area (Turkey) using logistic regression analysis. Environmental Geology, 46(4), 445-453.
Alcantara-Ayala, I., Sassa, K., Mikos, M., Han, Q., Rhyner, J., Takara, K., Nishikawa S., Rouhban B., and Briceno S. (2017). The 4th world landslide forum: landslide research and risk reduction for advancing the culture of living with natural hazards. International Journal of Disaster Risk Science, 8, 498-502.
Althuwaynee, O. F., & Pradhan, B. (2017). Semi-quantitative landslide risk assessment using GIS-based exposure analysis in Kuala Lumpur City. Geomatics, Natural Hazards and Risk, 8(2), 706-732. https:// doi.org/10.1080/19475705.2016.1255670.
Althuwaynee, O. F., Pradhan, B., & Ahmad, N. (2015). Estimation of rainfall threshold and its use in landslide hazard mapping of Kuala Lumpur metropolitan and surrounding areas. Landslides, 12, 861-875.
An, Q., Liu, J., Zhao, J., & Ma, R. (2010). Landslide susceptibility mapping based on logistic regression and GIS: an example of the Lushan area, China. Environmental Geology, 59(2), 391-401.
Ayalew, L., Yamagishi, H., Marui, H., & Kanno, T. (2005). Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Engineering geology, 81(4), 432-445.
Budimir, M. E. A., Atkinson, P. M., & Lewis, H. G. (2015). A systematic review of landslide probability mapping using logistic regression. Landslides, 12, 419-436.
Burrough, P. A., & McDonnell, R. A. (1998). Principles of geographical information systems. Oxford University Press.
Chen, W., Sun, Z., Han, J. (2018). Landslide Susceptibility Modeling Using Integrated Ensemble Weights of Evidence with Logistic Regression and Random Forest Models. Applied Science, 9, 171.
Dhianaufal, D., Kristyanto, T. H. W., Indra, T. L., & Syahputra, R. (2018). Fuzzy logic method for landslide susceptibility mapping in volcanic sediment area in Western Bogor. AIP Conference Proceedings 2023, Article 020190. https://doi.org/10.1063/1.5064187
Gue, S. S., & Tan, Y. C. (2003, August 19-20). The engineering aspects of hill-site development. [Paper presentation]. Hillside Development–Issues and challenges, Kuala Lumpur, Malaysia.
Hervas, J., Méndez, A., & Blanco, A. (2017). Influence of the proximity to water bodies on landslide occurrence. Geomorphology, 287, 112-123.
Holiday Weather. (2022). Kuala Lumpur, Malaysia: Annual Weather Average https://www.holiday-weather.com/kuala_lumpur/averages/ [13 December 2022].
Huqqani, I. A., Tay, L. T., & Mohamad-Saleh, J. (2022). Assessment of Landslide Susceptibility Mapping Using Artificial Bee Colony Algorithm Based on Different Normalizations and Dimension Reduction Techniques. Arabian Journal for Science and Engineering. 47: 7243–7260.
Kazmi, D., Qasim, S., Harahap, I. S. H., & Baharom, S. (2017). Landslide of Highland Towers 1993: a case study of Malaysia. Innovative Infrastructure Solutions, 2, 1-9.
Leonardi, G., Palamara, R., & Suraci, F. (2020). A fuzzy methodology to evaluate the landslide risk in road lifelines. Transp. Res. Procedia. 45: 732–739.
Leonardi, G., Palamara, R., Manti, F., & Tufano, A. (2022). GIS-Multicriteria Analysis Using AHP to Evaluate the Landslide Risk in Road Lifelines. Applied Sciences. 12(9):4707
Li, H. W. M., Lo, F. L. C., Wong, T. K. C., & Cheung, R. W. M. (2022). Machine learning-powered rainfall-based landslide predictions in Hong Kong—An exploratory study. Applied Sciences, 12(12), 6017.
Ma, Z., Mei, G., & Piccialli, F. (2021). Machine learning for landslides prevention: a survey. Neural Computing and Applications, 33(17), 10881-10907.
Mahmud, A. R., Awad, A., & Billa, R. (2013). Landslide Susceptibility Mapping Using Averaged Weightage Score and GIS: A Case Study at Kuala. Pertanika Journal of Science and Technology, 21(2): 473–486.
Malaysian Meteorological Department. Annual Report (2019). https://www.met.gov.my/assets/content/penerbitan/pdf/laporantahunan2019.pdf [13 December 2022].
Mandaglio, M. C., Gioffre, D., Pitasi, A., & Moraci, N. (2016). Qualitative Landslide Susceptibility Assessment in Small Areas. Procedia Engineering, VI Italian Conference of Researches in Geotechnical Engineering, 158: 440-445.
Nhu, V. H., Mohammadi, A., Shahabi, H., Ahmad, B. B., Al-Ansari, N., Shirzadi, A., ... & Nguyen, H. (2020). Landslide susceptibility mapping using machine learning algorithms and remote sensing data in a tropical environment. International Journal Of Environmental Research And Public Health, 17(14), 4933.
Nwazelibe, V. E., Unigwe, C. O., & Egbueri, J. C. (2023). Integration and comparison of algorithmic weight of evidence and logistic regression in landslide susceptibility mapping of the Orumba North erosion-prone region, Nigeria. Modeling Earth Systems and Environment, 9(1), 967-986.
Pradhan, P. (2008). Landslide susceptibility mapping using statistical models: a review. Progress in Physical Geography, 32(1), 1-59.
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., & Guzzetti, F. (2018). A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180, 60-91.
Saadatkhah, N., Kassim, A., & Lee, M. L. (2014). Qualitative and Quantitative LandslideSusceptibility Assessments in HuluKelang area, Malaysia. Electronic Journal of Geotechnical Engineering. 19(C): 545-563.
Saadatkhah, N., Kassim, A., & Lee, L. M. (2015). Susceptibility assessment of shallow landslides in Hulu Kelang area, Kuala Lumpur, Malaysia using analytical hierarchy process and frequency ratio. Geotechnical and Geological Engineering, 33, 43-57.
Sanusi, M. S. M., Ramli, A. T., Hassan, W. M. S. W., Lee, M. H., Izham, A., Said, M. N., Wagiran, H., & Heryanshah, A. (2017). Assessment of impact of urbanisation on background radiation exposure and human health risk estimation in Kuala Lumpur, Malaysia. Environment International, 104, 91-101. https:// doi.org/10.1016/j.envint.2017.01.009
Sardi, M. F., & Razak, K. A. (2019). Assessment of effectiveness of emergency response time during landslide event in Malaysia. ASM Sci. J, 12, 1-19.
Sekarlangit, N., Fathani, T. F. Wilopo, W. (2022). Landslide Susceptibility Mapping of Menoreh Mountain Using Logistic Regression. Journal of Applied Geology, 7(1): 51-63.
Sujatha, E. R., & Sridhar, V. (2021). Landslide susceptibility analysis: a logistic regression model case study in Coonoor, India. Hydrology, 8 (1), 1-18.
Süzen, M. L., & Kaya, B. ?. (2012). Evaluation of environmental parameters in logistic regression models for landslide susceptibility mapping. International Journal of Digital Earth, 5(4), 338-355.
Tehrani, F. S., Calvello, M., Liu, Z., Zhang, L., & Lacasse, S. (2022). Machine learning and landslide studies: recent advances and applications. Natural Hazards, 114(2), 1197-1245.
Trinh, T., Lu, B. T., Le, T. H. T., Nguyen, G. H., Tran, T. V., Nguyen, T. H. V., Nguyen, K. Q., & Nguyen, L. T. (2022). A comparative analysis of weight-based machine learning methods for landslide susceptibility mapping in Ha Giang area. Big Earth Data, 1-30.
Wang, F., Wang, Y., & Hong, H. (2018). Assessment of landslide susceptibility in an area with complex terrain based on the integration of multiple information sources and machine learning. Geocarto International, 33(10), 1272-1291.
World Health Organization. (2022). Landslides. Available online:
https://www.who.int/health-topics/landslides#tab=tab_1 [27 September 2022].
Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations, Turkey. Catena 72: 1-12.
Zhang, W. G., Liu, S. L., Wang, L. Q., Samui, P., Chwala, M., & He, Y. W. (2022). Landslide Susceptibility Research Combining Qualitative Analysis and Quantitative Evaluation: A Case Study of Yunyang County in Chongqing, China. Forests, 13: 1055.
Zillman, J. (1999). The physical impact of the disaster. In Natural disaster management, ed. J. Ingleton, 320. Leicester: Tudor Rose Holding Ltd.
Zubaidi, A. H., Baharuddin, Z. M., & Mansor, M. (2020). Redevelopment Of Abandoned Highland Towers As Memorial Landscape. Design Ideals Journal, 2(1),36–43.
Zulkafli, S. A., & Abd Majid, N. (2020). Landslides Incidents in Federal Territory of Kuala Lumpur, Malaysia. Eco. Env. & Cons., 27(3), 990–995.