International Journal of Academic Research in Business and Social Sciences

search-icon

Exploring Multi-Scenario Simulation of Ecosystem Service Value of Wetland in Yinchuan, China

Open access
Wetlands have an important function in supporting urban biodiversity, regulating climatic patterns, and enhancing resilience against natural disasters. Wetland conservation in rural parts of western China is a matter of concern due to the presence of water scarcity, fragile ecosystems, and insufficient resilience to natural disasters. The objective of this project is to examine existing strategies or methods for conserving wetlands, investigate the most effective approaches to wetland conservation, and improve a simulation model that may be used to highlight the importance of wetland ecosystem services. This study aims to provide a theoretical framework to support the wetland conservation strategy, catering to the needs of both participants and policymakers involved in the process.

Kovacs, G. M., Horion, S., & Fensholt, R. (2022). Characterizing ecosystem change in wetlands using dense earth observation time series. Remote Sensing of Environment, 281, 113267. https://doi.org/10.1016/j.rse.2022.113267
Xu, Y., Xie, Y., Wu, X., Xie, Y., Zhang, T., Zou, Z., Zhang, R., & Zhang, Z. (2023). Evaluating temporal-spatial variations of wetland ecosystem service value in China during 1990–2020 from the donor side based on cosmic exergy. Journal of Cleaner Production, 414, 137485. https://doi.org/10.1016/j.jclepro.2023.137485
Zhang, X., He, S., & Yang, Y.(2021). Evaluation of wetland ecosystem services value of the Yellow River Delta. Environmental Monitoring and Assessment, 193, 353. https://doi.org/10.1007/S10661-021-09130-X
Zhang, R., Zhang, X., Yang, J., & Yuan, H. (2013). Wetland ecosystem stability evaluation by using Analytical Hierarchy Process (AHP) approach in Yinchuan Plain, China. Mathematical and Computer Modelling, 57(3–4), 366–374. https://doi.org/10.1016/j.mcm.2012.06.014
Li, L., Su, F., Mark, T., Brown., Liu, H., & Wang, T. (2018). Assessment of Ecosystem Service Value of the Liaohe Estuarine Wetland. Applied Sciences, 8(12), 2561-. https://doi.org/10.3390/APP8122561
An, S., Li, H., Guan, B., Zhou, C., Wang, Z., Deng, Z., Zhi, Y., Liu, Y., Xu, C., Fang, S., Jiang, J., & Li, H. (2007). China’s Natural Wetlands: Past Problems, Current Status, and Future Challenges. AMBIO: A Journal of the Human Environment, 36(4), 335–342. https://doi.org/10.1579/0044-7447(2007)36[335:CNWPPC]2.0.CO;2
Nasreen, J., Wen, Y., Lu, X., Hai, L., & S, An. (2020). Ecosystem threats and management strategies for wetlands in China. Marine and Freshwater Research, 71(12), 1557-1563. https://doi.org/10.1071/MF19366
Tian, D., Dang, L., DING, R., Cai, Q., Zhang, P., Wang, L., & Yang, H. (2019). Distribution, Sources, and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons in the Surface Waters of the Yinchuan. Wetlands. 40(7), 3068-3077. https://doi.org/10.13227/J.HJKX.201812096
An, S., C., & Max, F. (2020). Further wetland research in China. Marine and Freshwater Research, 71(12) https://doi.org/10.1071/MFV71N12_ED1
Liu, Y., Jin, R., & Zhu, W. (2021). Conversion of Natural Wetland to Farmland in the Tumen River Basin: Human and Environmental Factors. Remote Sensing, 13(17), 3498-. https://doi.org/10.3390/RS13173498
Ying, Y., Lyle, D., Vorsatz., Christelle., & Stefano, C. (2021). Landward zones of mangroves are sinks for both land and water borne anthropogenic debris. Science of The Total Environment, 151809-. https://doi.org/10.1016/J.SCITOTENV.2021.151809
Lu, X., Liu, H., & Hu, J. (1996). Wetland resource protection and rational utilization in China. Chinese Geographical Science, 6(4), 313-320. https://doi.org/10.1007/S11769-996-0052-Z
Bian, H., Li, W., Li , Y., Ren, B., Niu, Y., & Zeng, Z. (2020). Driving forces of changes in China’s wetland area from the first (1999–2001) to second (2009–2011) National Inventory of Wetland Resources. Global Ecology and Conservation, 21.
https://doi.org/10.1016/J.GECCO.2019.E00867
Wang, Y., Zhang, W., & Wang, W. (2019). Practical exploration of " Internet+ healthcare" in Yinchuan City. Chinese Journal of Hospital Administration, 35(8), 623-626. https://doi.org/10.3760/CMA.J.ISSN.1000-6672.2019.08.003
Zhong, C.H., Yang, Q., Ma, H., Bian, J., Zhang, S., & Lu, X. (2019). Application of environmental isotopes to identify recharge source, age, and renewability of phreatic water in Yinchuan Basin. Hydrological Processes, 33(16), 2166-2173.
https://doi.org/10.1002/HYP.13468
Li, B., & Wang, W. (2018). Trade-offs and synergies in ecosystem services for the Yinchuan Basin in China. Ecological Indicators, 84, 837-846.
https://doi.org/10.1016/J.ECOLIND.2017.10.001
Mi, L., Tian, J., Si, J., Chen, Y., Li, Y., & Wang, X. (2020). Evolution of Groundwater in Yinchuan Oasis at the Upper Reaches of the Yellow River after Water-Saving Transformation and Its Driving Factors. International Journal of Environmental Research and Public Health, 17(4), 1304. https://doi.org/10.3390/IJERPH17041304
Byamukama, W., Salihu, A, K., & Ommega, I. (2019). Sustainable Management and Conservation of Wetland Resources in Uganda: A Review. Resources, Conservation and Recycling, 5(1), 47-51. https://doi.org/ 10.15436/2378-6841.19.2479
Virginia, C. (1986). An overview of the hydrologic concerns related to wetlands in the United States. Botany, 64(2), 364-374. https://doi.org/10.1139/B86-053
Guo, M., Li, J., Sheng, C., Xu, J., & Wu, Li. (2017). A Review of Wetland Remote Sensing. Sensors, 17(4), 777-. https://doi.org/10.3390/S17040777
Arya, S. R., Elizabeth, & K, S. (2018). Wetlands: The living waters-A review. Agricultural Reviews, 39(2), 122-129. https://doi.org/10.18805/AG.R-1717
Gregg, A., Alan, T., Herlihy., & Philip, R, K. (2019). Quantifying the extent of human disturbance activities and anthropogenic stressors in wetlands across the conterminous United States: results from the National Wetland Condition Assessment. Environmental Monitoring and Assessment, 191(1), 324-324. https://doi.org/10.1007/S10661-019-7314-6
Lu, X. (2019). Application of environmental isotopes to identify recharge source, age, and renewability of phreatic water in Yinchuan Basin. Hydrological Processes, 33(16), 2166-2173. https://doi.org/10.1002/HYP.13468
Robert, C., Rudolph, d, G., Paul, C., Paul, C., Sutton., Sander, v, d, P., Sharolyn, A., Ida, K., Stephen, F., & K, T. (2014). Changes in the global value of ecosystem services. Global Environmental Change-human and Policy Dimensions, 26(26), 152-158. https://doi.org/10.1016/J.GLOENVCHA.2014.04.002
Srikanta, S., Suman, C., Pawan, K, J., Saskia, K., Saskia, K., Somnath, S., Saikat, K, P., Urs, P., Kreuter., Paul, C., Sutton., Shouvik, J., Kinh, B, D., & Kinh, B, D. (2019). Ecosystem Service Value assessment of a natural reserve region for strengthening protection and conservation. Journal of Environmental Management, 244, 208-227. https://doi.org/10.1016/J.JENVMAN.2019.04.095
Dolf, D. G., Luke, B., C., Max, F. C., & Max, F. (2018). Wetland ecosystem services. The Wetland Book, 323-333. https://doi.org/10.1007/978-90-481-9659-3_66
Tang, S. (2019). Valuation of wetland ecosystem services in rapidly urbanizing region: a case study of the Nanjing Jiangbei new area, china. Applied Ecology and Environmental Research, 17(5). https://doi.org/10.15666/AEER/1705_1090910927
Edward, B., & Barbier. (2019). The Value of Coastal Wetland Ecosystem Services. Coastal Wetlands 947-964. https://doi.org/10.1016/B978-0-444-63893-9.00027-7
Stoeckl, N., Condie, S., & Anthony, K. (2021). Assessing changes to ecosystem service values at large geographic scale: A case study for Australia’s Great Barrier Reef. Ecosystem Services, 51, 101352. https://doi.org/10.1016
David, M., Mushet., & Cali, L. (2020). Modeling the Supporting Ecosystem Services of Depressional Wetlands in Agricultural Landscapes. Wetlands, 40(5), 1061-1069. https://doi.org/10.1007/S13157-020-01297-2.
Huang, Q., Zhao, X., He, C., Yin, D., & Meng, S. (2019). Impacts of urban expansion on wetland ecosystem services in the context of hosting the Winter Olympics: a scenario simulation in the Guanting Reservoir Basin, China. Regional Environmental Change, 19(8), 2365-2379. https://doi.org/10.1007/S10113-019-01552-1.
John, S., Sanderson., Natasha, B., David, A., Steingraeber., & Claudia, B. (2008). Simulated natural hydrologic regime of an intermountain playa conservation site. Wetlands, 28(2), 363-377. https://doi.org/10.1672/07-76.1
Ma, C., Zhang, G., Zhang, X., Zhou, B., & Mao, T. (2012). Simulation modeling for wetland utilization and protection based on system dynamic model in a coastal city, China. Procedia environmental sciences, 13, 202-213.
https://doi.org/10.1016/J.PROENV.2012.01.019
James, N., Carleton., Pallavi, P., Monica, L., Hubert, J., Montas. (2004). Combining GIS, AI and Modeling to Analyze Wetland Functions in Maryland Watersheds. American Society of Agricultural and Biological Engineers, 042012. https://doi.org/10.13031/2013.17071
Erik, R., Lee., Saied, M., & Theresa, M. (2002). A model to enhance wetland design and optimize non-point source pollution control. Journal of The American Water Resources Association, 38(1), 17-32. https://doi.org/10.1111/J.1752-1688.2002.TB01531.X
Leila, R., Bahram, M., & Ahmad, R, Y. (2020). Assessing and Modeling the Impacts of Wetland Land Cover Changes on Water Provision and Habitat Quality Ecosystem Services. Natural resources research, 29(6), 3701-3718. https://doi.org/10.1007/S11053-020-09667-7
Douglas, C. T., Owen, S., & Mark, L. (2018). Multi-species benefits of wetland conservation for marsh birds, frogs, and species at risk. Journal of Environmental Management, 212, 160-168. https://doi.org/10.1016/J.JENVMAN.2018.01.055