The study aims to evaluate an independent learning measurement model based on connectivism theory and Web 2.0. The quantitative method is used in this study. The data is obtained through the instrument of connectivism theory and Facebook usage. The subject of this study was 81 students of Two Year Programme in one of the matriculation colleges in Malaysia. These respondents were selected based on purposive sampling. The statistical analysis involved descriptive statistics and Partial Least Squares-Structural Equation Modeling (PLS-SEM) as the method used in this study. The findings indicated that there were significant structural relationships between connectivism theory and Web 2.0 towards students' achievement. Furthermore, the structural model showed that students' achievement is influenced by the principles of connectivism theory and Facebook as a learning tool. In conclusion, this study had successfully developed and evaluated an independent learning model based on connectivism theory and Web 2.0 through PLS-SEM. This study implied that apart from connectivism theory, Web 2.0 learning tool which is Facebook is also contributed a different perspective to the process of students' learning at matriculation colleges.
Sangakala, M., Ahmed, U., & Pahi, M. H. (2016). Empirical investigating on the role of supervisor support, job clarity, employee training and performance appraisal in addressing job satisfaction of nurses. International Business Management, 10(23), 5481-5486.
Matarid, N. M., Sobh, O. S., & Ahmed, U. (2018). The Impact of Organizational Justice and Demographics on Faculty Retention in Bahrain. Le travail humain, (3).
Bernsteiner, R., Ostermann, H., & Staudinger, R. (2008). Facilitating e-learning with social software: Attitudes and usage from the student’s point of view. International Journal of Web-Based Learning and Teaching Technologies, 3(3), 16-33.
Campbell, T., Wang, S., Hsu, H.-Y., Duffy, A., & Wolf, P. (2010). Learning with web tools, simulations, and other technologies in science classrooms. Journal of Science Education and Technology, 19(5), 505-511. doi:10.1007/ s10956-010-9217-8
Candy, P. C. (1991). Self-Direction for Lifelong Learning. A Comprehensive Guide to Theory and Practice. Jossey-Bass, 350 Sansome Street, San Francisco, CA 94104-1310.
Crook, C., Cummings, J., Fisher, T., Graber, R., Harrison, C., & Lewin, C. (2008). Web 2.0 technologies for learning: The current landscape-opportunities, challenges and tensions.
Dabbagh, N. (2007). The online learner: Characteristics and pedagogical implications.Contemporary Issues in Technology and Teacher Education, 7(3), 217- 226.
Dabbagh, N., & Reo, R. (2011). Back to the future: Tracing the roots and learning affordances of social software. Hershey, PA: IGI Global.
Downes, S. (2010). Learning networks and connective knowledge. In H. Yang & S. Yuen (Eds.), Collective intelligence and e-learning 2.0: Implications of web-based communities and networking (pp. 1-26). Hershey, PA: IGI Global.
Drexler, W., Baralt, A., & Dawson, K. (2008). The teach Web 2.0 consortium: A tool to promote educational social networking and Web 2.0 use among educators. Educational Media International, 45(4), 271-283. doi:10.1080/09523980802571499
Dron, J. (2007). Designing the undesignable: Social software and control. Educational Technology & Society, 10(3), 60-71. http://www.ifets.info/journals/10_3/5.pdf Educause (2006). 7 Things you should know about facebook. Educause Learning Initiative.
http://net.educause.edu/ir/library/pdf/ELI7017.pdf> Retrieved 18.01.10.
Du, F. (2012). Using study plans to develop self-directed learning skills: Implications from a pilot project. College Student Journal, 46(1), 223-232.
Dunlap, J. C., & Lowenthal, P. R. (2011). Learning, unlearning, and relearning: Using Web 2.0 technologies to support the development of lifelong learning skills.
Fein, M. L. (2014). Redefining higher education: How self-direction can save colleges. New Brunswick, NJ: Transaction.
Fornell, C., & Bookstein, F. L. (1982). two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19(4), 440-452.
Fornell, C., & Cha, J. (1994). Partial least squares. Advanced methods of marketing research, 407(3), 52-78.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable and measuremenr error Journal of Marketing Research, 34(2), 161-188.
Gefen, D., Straub, D. W., & Boudreau, M. C. (2000). Structural equation modelling and regression: Guidelines for research practice. Communication of the Association for Information Systems, 4(7), 2-77.
Glud, L. N., Buus, L., Ryberg, T., Georgsen, M., & Davidsen, J. (2010). Contributing to a learning methodology for Web 2.0 learning—Identifying central tensions in educational use of Web 2.0 technologies. In L. Dirckinck-Holmfeld, V. Hodgson, C. Jones,M. de Laat, D. McConnell, & T. Ryberg (Eds.), Proceedings of the 7th International Conference on Networked Learning (pp. 934–942). Retrieved from: http://www.lancs.ac.uk/fss/organisations/netlc/past/nlc2010/abstracts/PDFs/N%C3%B8rgaard%20Glud.pdf
Greenhow, C., Robelia, B., & Hughes, J. E. (2009). Learning, te
In-Text Citation: (Mohamed, Ubaidullah, & Yusof, 2019)
To Cite this Article: Mohamed, Z., Ubaidullah, N. H., & Yusof, S. I. M. (2019). A Measurement Model of Independent Learning Based on Connectivism Theory and Web 2.0: Partial Least Squares-Structural Equation Modeling (Pls-Sem) Approach. International Journal of Academic Research in Business and Social Sciences, 9(14), 93–106.
Copyright: © 2019 The Author(s)
Published by Human Resource Management Academic Research Society (www.hrmars.com)
This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at: http://creativecommons.org/licences/by/4.0/legalcode