This paper studies the scenario of air pollution among selected thirteen countries for a five-year period 2010 until 2014. The countries’ main macroeconomics variables namely Gross Domestic Product per capita (GDP), Energy Usage, Urbanization and Industrial Production are the potential causes that could have serious impact on the amount of air pollution among these nations. Three key econometric models using longitudinal data are chosen for analysis i.e. the Pooled Ordinary Least Square (OLS), the Random Effect and Fixed Effect Models. The findings showed that the Pooled OLS explanatory variables are all significant, but only two variables were significant in each random and fixed effects model. However, the appropriate technique that best explain this analysis is the Fixed Effect Model. GDP was the key variable that caused the high emissions of air pollution in these selected countries.
Baltagi, B. (2005). Econometric Analysis of panel data. New York, NY: Cambridge University Press.
Brauer, M., Freedman, G., Frostad, J., van Donkelaar, A., Martin, R. V., Dentener, F., … Cohen, A. (2016). Ambient air pollution exposure estimation for the global burden of disease 2013. Environmental Science and Technology, 50, 79-88. Doi:10.1021/acs.est.5b03709
dos Santos, L. H. M., Kerr, A. A. F. S., Veríssimo, T. G., Andrade, M. d. F., de Miranda, R. M., Fornaro, A., & Saldiva., P. (2014). Analysis of atmospheric aerosol (PM 2.5 ) in Recife City, Brazil. Journal of the Air and Waste Management Association, 64, 519-528. Doi: 10.1080/10962247.2013.854282
Ehrlich, R. P., & Holdren, J. P. (1971). Impact of population growth. Science, 171, 1212-1217. URL:http://links.jstor.org/sici?sici=00368075%2819710326%293%3A171%3A3977%3C1212%3AIOPG%3E2.0.CO%3B2-E
Gehui, W., Kawamura, K., Shuncheng, L., Kinfai, H., & Junji, C. (2006). Molecular, seasonal, and spatial distributions of organic aerosols from fourteen Chinese cities. Environmental Science and Technology, 40, 4619-4625. Doi:10.1021/es060291x
Green, M. C., Chow, J. C., Watson, J. G., Dick, K., & Inouye, D. (2015). Effects of snow cover and atmospheric stability on winter PM2.5concentrations in Western U.S. Valleys. Journal of Applied Meteorology and Climatology, 54, 1191-1201. Doi: 10.1016/j.rse.2018.12.002
Guangdong, L., Chuanglin, F., Shaojian, W., & Siao, S. (2016). The effect of economic growth, urbanization, and industrialization on fine particulate matter (PM2.5) concentrations in China. Environmental Science and Technology, 50, 11452-11459. Doi:10.1021/acs.est.6b02562
Gujarati, D. (2003). Basic Econometrics. New York, NY: McGraw Hill.
Hausman, J. A., & Taylor, W. E. (1981). Panel data and unobservable individual effects. Econometrica, 49, 1377-1398. Doi:10.2307/1911406
Jin, Q., Fang, X., Wen, B., & Shan., A. (2017). Spatio-temporal variations of PM2.5 emission in China from 2005 to 2014. Chemosphere, 183, 429-436. Doi:10.1016/j.chemosphere.2017.05.133
Ma, X., Wang, J., Yu, F., Jia, H., & Hu, Y. (2016). Can MODIS AOD be employed to derive PM2.5 in Beijing-Tianjin-Hebei over China? Atmospheric Research, 181, 250-256. Doi:10.1016/j.atmosres.2016.06.018
Mukhopadhyay, R., Sambandam, S., Pillarisetti, A., Jack, D., Mukhopadhyay, K., Balakrishnan, K., & Smith., K. R. (2012). Cooking practices, air quality, and the acceptability of advanced cookstoves in Haryana, India: An exploratory study to inform large-scale interventions. Global Health Action, 5, 1-13. Doi:10.3402/gha.v5i0.19016.
National Bureau of Statistics, 2013.
http://www.stats.gov.cn/english/statisticaldata/AnnualData/
Rehfuess, E., Mehta, S., & Pruss-Ustun., A. (2006). Assessing household solid fuel use: Multiple implications for the millennium development goals. Environmental Health Perspectives, 114 (3), 373-378. Doi: 10.1289/ehp.8603
Shen, G. (2015). Quantification of emission reduction potentials of primary air pollutants from residential solid fuel combustion by adopting cleaner fuels in China. Journal of Environmental Sciences, 37, 1-7. Doi:10.1016/j.jes.2015.04.018
Timmermans, R., Kranenburg, R., Manders, A., Hendriks, C., Segers, A., Dammers, E., ... Schaap, M. (2017). Source apportionment of PM2.5 across China using LOTOS-EUROS. Atmospheric Environment, 164, 370-386. Doi:10.1016/j.atmosenv.2017.06.003
Wang, Q., & Li., R. (2016). Drivers for energy consumption: A comparative analysis of China and India. Renewable and Sustainable Energy Reviews, 62, 954-962. Doi:10.1016/j.rser.2016.04.048
Wang, S., Zhou, C., Wang, Z., Fengand, K., & Hubacek, K. 2017. The characteristics and drivers of fine particulate matter (PM2.5) distribution in China. Journal of Cleaner Production, 142, 1800-1809. Doi: 10.1016/j.jclepro.2016.11.104
Wakeel, M., Yang, S., Chen, B., Hayat, T., Alsaedi, A., & Ahmad., B. (2017). Network perspective of embodied PM2.5 – A case study. Journal of Cleaner Production, 142, 3322-3331.
In-Text Citation: (Jalil & Singh, 2019)
To Cite this Article: Jalil, S. A., & Singh, G. K. B. (2019). Air Pollution among 13-Selected Countries: Is it a Major Concern? International Journal of Academic Research in Business and Social Sciences, 9(3), 487–498.
Copyright: © 2019 The Author(s)
Published by Human Resource Management Academic Research Society (www.hrmars.com)
This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at: http://creativecommons.org/licences/by/4.0/legalcode