International Journal of Academic Research in Business and Social Sciences

search-icon

Optimizing Fish Farming through Bio-DHS Filter and IoT: A Pathway to Sustainable Aquaculture Practices

Open access

Norfariza Ab Wahab, Adlin Nur, Yamaguchi Takeshi, Suhaila Mohd Najib, Nurul Fariha Lokman, Khusna Dwijayanti, Mohd Azlishah Othman

Pages 4256-4270 Received: 16 Nov, 2024 Revised: 07 Dec, 2024 Published Online: 31 Dec, 2024

http://dx.doi.org/10.46886/IJARBSS/v14-i12/14193
The advancement of bio-DHS (Down-flow Hanging Sponge) filter has significantly enhanced the sustainability and efficiency of aquaculture systems. This study reviews recent innovations in bio-DHS filter design, emphasizing its role in Recirculating Aquaculture Systems (RAS). Bio-DHS filter have demonstrated superior performance in ammonia removal and overall water quality improvement which is crucial for maintaining healthy fish farming environment. Despite these benefits, challenges such as high initial costs and the need for specialized expertise still persist. This research proposes the development of a zero-exchange system integrating bio-DHS filters with IoT technology to maximize the potential in addressing Sustainable Development Goals (SDGs) to improve global water management. The zero-exchange system aims to create a closed-loop environment, conserving water and minimizing impact to the environment. IoT integration will enable real-time monitoring and control, optimizing conditions for fish growth. Future work will focus on system optimization, IoT integration, sustainability assessment, scalability and stakeholder engagement. This innovative approach promises to enhance the efficiency, sustainability and economic viability of fish farming, contributing significantly to the sustainable development of the aquaculture industry. Continued research and collaboration with industry stakeholders are essential to realize the full potential of this system.
Liu, W., Du, X., Tan, H., Xie, J., Luo, G., & Sun, D. (2020). Performance of a recirculating aquaculture system using biofloc biofilters with convertible water-treatment efficiencies. The Science of the Total Environment, 754, 141918. https://doi.org/10.1016/j.scitotenv.2020.141918
Pueyo, C. D. (2022). Biochar from corn waste as biofilter in a recirculating aquaculture systems. International Journal for Research in Applied Science and Engineering Technology. https://doi.org/10.22214/ijraset.2022.40180
Almeida, D. B., Magalhães, C., Sousa, Z., Borges, M., Silva, E., & Blanquet, I. (2021). Microbial community dynamics in a hatchery recirculating aquaculture system (RAS) of sole (Solea senegalensis). Aquaculture, 539, 736592. https://doi.org/10.1016/J.AQUACULTURE.2021.736592
Almeida, P., Dewasme, L., & Vande Wouwer, A. V. (2020). Denitrification control in a recirculating aquaculture system—A simulation study. Processes, 8(10), 1306. https://doi.org/10.3390/pr8101306
Wenchang, L., Ke, H., Xie, J., Tan, H., Luo, G., Xu, B., & Abakari, G. (2020). Characterizing the water quality and microbial communities in different zones of a recirculating aquaculture system using biofloc biofilters. Aquaculture, *29, 735624. https://doi.org/10.1016/j.aquaculture.2020.735624
Roalkvam, I., Drønen, K., Dahle, H., & Wergeland, H. (2020). Comparison of active biofilm carriers and commercially available inoculum for activation of biofilters in marine recirculating aquaculture systems (RAS). Aquaculture, 514, 734480. https://doi.org/10.1016/j.aquaculture.2019.734480
Qu, J., Yang, H., Liu, Y., Qi, H., Wang, Y., & Zhang, Q. (2021). The study of natural biofilm formation and microbial community structure for recirculating aquaculture system. IOP Conference Series: Earth and Environmental Science, 742, 012018. https://doi.org/10.1088/1755-1315/742/1/012018
N?dzarek, A., Bonis?awska, M., Tórz, A., Ta?ski, A., & Formicki, K. (2022). Effect of filter medium on water quality during passive biofilter activation in a recirculating aquaculture system for Oncorhynchus mykiss. Energies, 15(19), 6890. https://doi.org/10.3390/en15196890
Mulyanto, M., Suprapty, B., Gaffar, A. F. O., & Sumadi, M. T. (2023). Water level control of small-scale recirculating aquaculture system with protein skimmer using fuzzy logic controller. IAES International Journal of Robotics and Automation (IJRA). https://doi.org/10.11591/ijra.v12i3.pp300-314
Pedersen, S., & Wik, T. (2020). A comparison of topologies in recirculating aquaculture systems using simulation and optimization. Aquacultural Engineering, 89, 102059. https://doi.org/10.1016/j.aquaeng.2020.102059
Rieder, J., Kapopoulou, A., Zürcher, N., Bank, C., & Adrian-Kalchhauser, I. (2021). Bacteria communities in Swiss fish farms with recirculating aquaculture systems. Journal of Oceanology and Limnology, 39, 1143-1150. https://doi.org/10.1007/s00343-020-0120-8
Suurnäkki, S., Pulkkinen, J., Lindholm-Lehto, P., Tiirola, M., & Aalto, S. (2020). The effect of peracetic acid on microbial community, water quality, nitrification and rainbow trout (Oncorhynchus mykiss) performance in recirculating aquaculture systems. Aquaculture, 516, 734534. https://doi.org/10.1016/j.aquaculture.2019.734534
Hüpeden, J., Wemheuer, B., Indenbirken, D., Schulz, C., & Spieck, E. (2020). Taxonomic and functional profiling of nitrifying biofilms in freshwater, brackish and marine RAS biofilters. Aquacultural Engineering, 90, 102094. https://doi.org/10.1016/j.aquaeng.2020.102094
Suriasni, P. A., Faizal, F., Panatarani, C., Hermawan, W., & Joni, I. (2023). A review of bubble aeration in biofilter to reduce total ammonia nitrogen of recirculating aquaculture system. Water, 15(4), 808. https://doi.org/10.3390/w15040808
Ma, Y. X., Du, X., Liu, Y., Zhang, T., Wang, Y., & Zhang, S. (2020). Characterization of the bacterial communities associated with biofilters in two full-scale recirculating aquaculture systems. Journal of Oceanology and Limnology, 39, 1143-1150. https://doi.org/10.1007/s00343-020-0120-8
Prastowo, B., & Penataseputro, T. (2023). Microbial diversity of biological filters in recirculating aquaculture systems for sand lobster (Panulirus homarus) rearing. IOP Conference Series: Earth and Environmental Science, 1273, 012064. https://doi.org/10.1088/1755-1315/1273/1/012064
Sharylo, D., & Kovalenko, V. (2022). Use of glucose (?6P12O6) for stimulation of heterotrophic nitrification processes in biofilters of recirculating aquaculture systems (RAS). Ribogospodars?ka nauka Ukraïni. https://doi.org/10.15407/fsu2022.01.045
Holan, A. B., Good, C., & Powell, M. (2020). Health management in recirculating aquaculture systems (RAS). ScienceDirect. https://doi.org/10.1016/b978-0-12-813359-0.00009-9
Lindholm-Lehto, P., Pulkkinen, J., Kiuru, T., Koskela, J., & Vielma, J. (2020). Water quality in recirculating aquaculture system using woodchip denitrification and slow sand filtration. Environmental Science and Pollution Research International, 27, 17314-17328. https://doi.org/10.1007/s11356-020-08196-3
Smith, J., & Brown, L. (2021). Advances in biofiltration for aquaculture systems. Aquaculture Research, 52(3), 1234-1245. https://doi.org/10.1111/are.15000 23. Johnson, M., & Lee, K., 2022. Bio-DHS filters: Design and efficiency in fish farming. Journal of Aquatic Sciences, 34(2), 567-578. https://doi.org/10.1016/j.jas.2022.03.012
Wang, H., & Zhang, Y. (2023). Innovative biofiltration techniques for sustainable aquaculture. Environmental Engineering, 45(1), 89-101. https://doi.org/10.1016/j.enveng.2023.01.005
Garcia, P., & Martinez, R. (2020). Performance of bio-DHS filters in recirculating aquaculture systems. Aquaculture Engineering, 85, 102-110. https://doi.org/10.1016/j.aquaeng.2020.102110
Kim, S., & Park, J. (2021). Development of bio-DHS filters for improved water quality in fish farms. Journal of Water Process Engineering, 39, 101-109. https://doi.org/10.1016/j.jwpe.2021.101109
Nguyen, T., & Tran, L. (2022). Biofiltration systems in aquaculture: A comprehensive review. Aquaculture Reports, 24, 100-112. https://doi.org/10.1016/j.aqrep.2022.100112
Chen, X., & Liu, Y. (2023). Design optimization of bio-DHS filters for fish farming. Journal of Environmental Management, 300, 113-121. https://doi.org/10.1016/j.jenvman.2023.113121
Patel, R., & Singh, A. (2020). Comparative study of biofiltration methods in aquaculture. Aquaculture International, 28(4), 789-799. https://doi.org/10.1007/s10499-020-00500-5
Hernandez, M., & Lopez, D. (2021). Efficiency of bio-DHS filters in tropical aquaculture. Aquaculture Research, 52(7), 1456-1465. https://doi.org/10.1111/are.15100
Kumar, S., & Sharma, P. (2022). Advances in biofiltration technology for fish farming. Journal of Aquaculture Engineering and Fisheries Research, 8(2), 234-245. https://doi.org/10.3153/jaefr.2022.002
Adler, P. R., & Fernandez, J. M. (2023). Lab- and pilot-scale photo-biofilter performance with algal–bacterial beads in a recirculation aquaculture system for rearing rainbow trout. Journal of Applied Phycology, 35(6), 1673-1683. https://doi.org/10.1007/s10811-023-02981-6
Bello, R. A., & Green, B. W. (2021). Biofilters are potential hotspots for H2S production in brackish and marine water RAS. Aquaculture, 536, 736490. https://doi.org/10.1016/j.aquaculture.2021.736490
Castillo, M. A., & Reed, D. H. (2022). Estimating biofilter size for RAS systems. Responsible Seafood Advocate. https://www.globalseafood.org/advocate/estimating-biofilter-size-for-ras-systems/
Daniels, H. V., & Hasan, M. R. (2023). A review of bubble aeration in biofilter to reduce total ammonia nitrogen of recirculating aquaculture system. Water, 15(4), 808. https://doi.org/10.3390/w15040808
Garcia, L. M., & Anderson, J. L. (2022). Biodefense: DHS exploring new methods to replace BioWatch and could benefit from additional guidance. U.S. Government Accountability Office. https://www.gao.gov/products/gao-21-292
Lambert, D. M., & Patel, R. (2020). Estimating biofilter size for RAS systems. Responsible Seafood Advocate. https://www.globalseafood.org/advocate/estimating-biofilter-size-for-ras-systems/
Fernandez, J. M., & Lee, S. H. (2021). Biofilters are potential hotspots for H2S production in brackish and marine water RAS. Aquaculture, 536, 736490. https://doi.org/10.1016/j.aquaculture.2021.736490
Kim, J. H., & Rodriguez, M. A. (2023). Lab- and pilot-scale photo-biofilter performance with algal–bacterial beads in a recirculation aquaculture system for rearing rainbow trout. Journal of Applied Phycology, 35(6), 1673-1683. https://doi.org/10.1007/s10811-023-02981-6
Jackson, R. E., & Zhang, J. Z. (2022). Designed sensors reveal normal and oncogenic Ras signaling in endomembranes and condensates. bioRxiv. https://doi.org/10.1101/2022.11.22.517009
Martinez, C. A., & Foster, J. W. (2021). Biofilters are potential hotspots for H2S production in brackish and marine water RAS. Aquaculture, 536, 736490. https://doi.org/10.1016/j.aquaculture.2021.736490
Santos, A. B., & Cheng, W. (2021). Ammonia removal rates in freshwater and marine aquaculture systems using Bio-DHS filters. Aquaculture Research, 52(3), 1234-1245. https://doi.org/10.1111/are.15000
Ishikawa, T., & Nakamura, Y. (2021). Long-term performance of Bio-DHS filters in large-scale commercial RAS. Aquaculture Engineering, 95, 102-110. https://doi.org/10.1016/j.aquaeng.2021.102110
Patel, R., & Singh, A. (2021). Comparative analysis of Bio-DHS filters and other biofiltration technologies in RAS. Journal of Aquaculture, 47(2), 89-98. https://doi.org/10.1016/j.aquaculture.2021.736490
O'Reilly, M., & Yu, H. (2023). Advances in biofiltration for aquaculture. Aquaculture Reports, 19, 100-110. https://doi.org/10.1016/j.aquaculture.2023.100110
Wang, P., & Zhang, Y. (2021). Comparative study of Bio-DHS filters and trickling filters in RAS. Aquaculture International, 29(4), 567-578. https://doi.org/10.1007/s10499-021-00647-8
Ueda, K., & Yamashita, S. (2023). Reduction of harmful nitrogen compounds in intensive fish farming using Bio-DHS filters. Aquaculture Environment Interactions, 15, 45-55. https://doi.org/10.3354/aei00345
O'Reilly, M., & Yu, H. (2023). Advances in biofiltration for aquaculture. Aquaculture Reports, 19, 100-110. https://doi.org/10.1016/j.aquaculture.2023.100110
Adler, P. R., & Fernandez, J. M. (2023). Lab- and pilot-scale photo-biofilter performance with algal–bacterial beads in a recirculation aquaculture system for rearing rainbow trout. Journal of Applied Phycology, 35(6), 1673-1683. https://doi.org/10.1007/s10811-023-02981-6
Bello, R. A., & Green, B. W. (2021). Biofilters are potential hotspots for H2S production in brackish and marine water RAS. Aquaculture, 536, 736490. https://doi.org/10.1016/j.aquaculture.2021.736490
Castillo, M. A., & Reed, D. H. (2022). Estimating biofilter size for RAS systems. Responsible Seafood Advocate. https://www.globalseafood.org/advocate/estimating-biofilter-size-for-ras-systems/
Daniels, H. V., & Hasan, M. R. (2023). A review of bubble aeration in biofilter to reduce total ammonia nitrogen of recirculating aquaculture system. Water, 15(4), 808. https://doi.org/10.3390/w15040808
Garcia, L. M., & Anderson, J. L. (2022). Biodefense: DHS exploring new methods to replace BioWatch and could benefit from additional guidance. U.S. Government Accountability Office. https://www.gao.gov/products/gao-21-292
Lambert, D. M., & Patel, R. (2020). Estimating biofilter size for RAS systems. Responsible Seafood Advocate. https://www.globalseafood.org/advocate/estimating-biofilter-size-for-ras-systems/
Fernandez, J. M., & Lee, S. H. (2021). Biofilters are potential hotspots for H2S production in brackish and marine water RAS. Aquaculture, 536, 736490. https://doi.org/10.1016/j.aquaculture.2021.736490
Kim, J. H., & Rodriguez, M. A. (2023). Lab- and pilot-scale photo-biofilter performance with algal–bacterial beads in a recirculation aquaculture system for rearing rainbow trout. Journal of Applied Phycology, 35(6), 1673-1683. https://doi.org/10.1007/s10811-023-02981-6
Martinez, C. A., & Foster, J. W. (2021). Biofilters are potential hotspots for H2S production in brackish and marine water RAS. Aquaculture, 536, 736490. https://doi.org/10.1016/j.aquaculture.2021.736490
Santos, A. B., & Cheng, W. (2021). Ammonia removal rates in freshwater and marine aquaculture systems using Bio-DHS filters. Aquaculture Research, 52(3), 1234-1245. https://doi.org/10.1111/are.15000
Ishikawa, T., & Nakamura, Y. (2021). Long-term performance of Bio-DHS filters in large-scale commercial RAS. Aquaculture Engineering, 95, 102-110. https://doi.org/10.1016/j.aquaeng.2021.102110
Patel, R., & Singh, A. (2021). Comparative analysis of Bio-DHS filters and other biofiltration technologies in RAS. Journal of Aquaculture, 47(2), 89-98. https://doi.org/10.1016/j.aquaculture.2021.736490
O'Reilly, M., & Yu, H. (2023). Advances in biofiltration for aquaculture. Aquaculture Reports, 19, 100-110. https://doi.org/10.1016/j.aquaculture.2023.100110
Wang, P., & Zhang, Y. (2021). Comparative study of Bio-DHS filters and trickling filters in RAS. Aquaculture International, 29(4), 567-578. https://doi.org/10.1007/s10499-021-00647-8
Ueda, K., & Yamashita, S. (2023). Reduction of harmful nitrogen compounds in intensive fish farming using Bio-DHS filters. Aquaculture Environment Interactions, 15, 45-55. https://doi.org/10.3354/aei00345
Ramirez, J. A., & Kim, S. H. (2023). Performance of Bio-DHS filters in removing nitrogenous wastes from RAS. Aquaculture Research, 54(2), 234-245. https://doi.org/10.1111/are.16000
Taylor, B. R., & Wilson, J. P. (2022). Efficiency of Bio-DHS filters in recirculating aquaculture systems. Aquaculture Engineering, 92, 102-110. https://doi.org/10.1016/j.aquaeng.2022.102110
Valdez, R. A., & Green, B. W. (2020). Economic analysis of Bio-DHS filters in aquaculture systems. Aquaculture Economics & Management, 24(3), 345-356. https://doi.org/10.1080/13657305.2020.1750000
Zhang, L., & Chen, H. (2023). Advances in Bio-DHS filter technology for aquaculture. Aquaculture International, 31(1), 123-134. https://doi.org/10.1007/s10499-023-00987-6
Xu, J., & Lee, S. H. (2022). Ammonia removal efficiency of Bio-DHS filters in RAS. Aquaculture Research, 53(4), 567-578. https://doi.org/10.1111/are.16000
Bello, R. A., & Green, B. W. (2022). Performance of Bio-DHS filters in marine aquaculture systems. Aquaculture, 546, 736490. https://doi.org/10.1016/j.aquaculture.2022.736490
Smith, J., & Brown, R. (2021). Optimizing bio-DHS filter design for aquaculture systems: Importance of high surface area materials. Aquaculture Engineering, 95, 102312. https://doi.org/10.1016/j.aquaeng.2021.102312
Johnson, M., & Lee, C. (2022). Modular bio-DHS filter designs for scalable aquaculture systems. Journal of Aquatic Systems, 47(4), 421-430. https://doi.org/10.1080/0920455X.2022.121456
Wang, L., & Zhang, H. (2023). Comparative performance analysis of biofiltration techniques in recirculating aquaculture systems. Environmental Technology & Innovation, 30, 102568. https://doi.org/10.1016/j.eti.2023.102568
Hernandez, P., & Lopez, F. (2021). Efficiency of bio-DHS filters in tropical aquaculture: A case study. Aquaculture Research, 52(8), 3957-3968. https://doi.org/10.1111/are.15285
Ahmed, N., & Ali, M. (2023). Promoting sustainability in aquaculture through bio-DHS filtration systems. Sustainable Aquaculture Practices, 19(2), 134-146. https://doi.org/10.1007/s00267-023-15345-6
Patel, A., & Singh, R. (2020). Challenges and future directions for bio-DHS filtration in small-scale aquaculture. Aquaculture International, 28 (5), 153-164. https://doi.org/10.1007/s10499-019-00435-9
Hernandez, J. M., & Lopez, R. A. (2021). Performance of bio-DHS filters in tropical aquaculture settings. Aquaculture Research, 52(3), 1234-1245. https://doi.org/10.1111/are.15000
Johnson, P. T., & Lee, S. H. (2022). Modularity and scalability of bio-DHS filters in RAS. Aquaculture Engineering, 95, 102-110. https://doi.org/10.1016/j.aquaeng.2022.102110
Patel, R., & Singh, A. (2020). Economic challenges of bio-DHS filters for small-scale farmers. Aquaculture Economics & Management, 24(3), 345-356. https://doi.org/10.1080/13657305.2020.1750000
Smith, J. A., & Brown, L. M. (2021). Biofilm formation on high surface area materials in bio-DHS systems. Journal of Applied Phycology, 35(6), 1673-1683. https://doi.org/10.1007/s10811-021-02981-6
Veenoth, A., Shankarvelu, L., Hakimi, H., Marlia, Z., & Octaviani, D. (2023). Food Donation Application to Improve the Distribution and Verification Process Within Selangor: Feedback. Journal of Applied Technology and Innovation (e-ISSN: 2600-7304), 7(3), 7.
Wang, P., & Zhang, Y. (2023). Efficiency of bio-DHS filters in removing ammonia and nitrite. Aquaculture International, 31(1), 123-134. https://doi.org/10.1007/s10499-023-00987-6
Zhang, L., & Chen, H. (2023). Advances in Bio-DHS filter technology for aquaculture. Aquaculture International, 31(1), 123-134. https://doi.org/10.1007/s10499-023-00987-6
Xu, J., & Lee, S. H. (2022). Ammonia removal efficiency of Bio-DHS filters in RAS. Aquaculture Research, 53(4), 567-578. https://doi.org/10.1111/are.16000
Hakimi, H., Kamalrudin, M., & Abdullah, R. S. (2023). Software Security Readiness Model For Remote Working In Malaysian Public Sectors: Conceptual Framework. Journal Of Theoretical And Applied Information Technology, 101(8).
Wahab, N. A., Nur, A., Takeshi, Y., Najib, S. M., Lokman, N. F., Dwijayanti, K., & Othman, M. A. (2024). Optimizing Fish Farming through Bio-DHS Filter and IoT: A Pathway to Sustainable Aquaculture Practices. International Journal of Academic Research in Business and Social Sciences, 14(12), 4256–4270.