International Journal of Academic Research in Business and Social Sciences

search-icon

Satisfaction and User Reviews in Tourism Using Big Data and Text Mining: A Bibliometric Study

Open access
The integration of technology, particularly social media and user-generated content platforms, has shaped tourist behavior and decision-making processes. Tourists increasingly rely on online reviews or electronic word of mouth (eWOM) as key determinants in destination perception and selection. Sentiment analysis using big data and text mining techniques is conducted to understand and harness the power of eWOM in shaping tourist experiences. Bibliometric analysis is used in research to identify potential citation and co-citation patterns, facilitating exploration and explanation of key research content in specific fields. This study conducts bibliometric analysis on a collection of Scopus articles related to satisfaction and user reviews in the field of tourism using big data and text mining techniques. The results from analyzing 425 articles show that Asia is the most prominent region for this field of research. Citation analysis resulted in 10 clusters, whereas bibliometric coupling resulted in 6 clusters, with 1 cluster having newly emerging topics in this field of research, namely experience and cultural tourism. Keywords in this field of research are separated into 5 clusters, with "sustainable tourism," "topic modeling," and "hotel industry" being the newly emerging keywords in this field of research.
2020 Annual Report. (2021). Massachusetts. Retrieved from https://ir.tripadvisor.com/static-files/fef1a79b-0b14-40b3-ae35-da7ee030aca4
Akhtar, Nadeem, Khan, N., Mahroof Khan, M., Ashraf, S., Hashmi, M. S., Khan, M. M., & Hishan, S. S. (2021). Post-covid 19 tourism: Will digital tourism replace mass tourism? Sustainability, 13(10). https://doi.org/10.3390/su13105352
Akhtar, Naeem, Sun, J., Akhtar, M. N., & Chen, J. (2019). How attitude ambivalence from conflicting online hotel reviews affects consumers’ behavioural responses: The moderating role of dialecticism?. Journal of Hospitality and Tourism Management, 41, 28–40. https://doi.org/10.1016/j.jhtm.2019.09.003
Alaei, A. R., Becken, S., & Stantic, B. (2019). Sentiment analysis in tourism: Capitalizing on Big Data. Journal of Travel Research, 58(2), 175–191.
https://doi.org/10.1177/0047287517747753
Alzate, M., Arce-Urriza, M., & Cebollada, J. (2022). Mining the text of online consumer reviews to analyze brand image and brand positioning. Journal of Retailing and Consumer Services, 67. https://doi.org/10.1016/j.jretconser.2022.102989
Amira, S. A., & Irawan, M. I. (2020). Opinion analysis of traveler based on tourism site review using sentiment analysis. IPTEK The Journal for Technology and Science, 31(2), 223. https://doi.org/10.12962/j20882033.v31i2.6338
Andersen, N. (2021). Mapping the expatriate literature: A bibliometric review of the field from 1998 to 2017 and identification of current research fronts. International Journal of Human Resource Management, 32(22), 4687–4724.
https://doi.org/10.1080/09585192.2019.1661267
Berger, J., Humphreys, A., Ludwig, S., Moe, W. W., Netzer, O., & Schweidel, D. A. (2020). Uniting the Tribes: Using text for marketing insight. Journal of Marketing, 84(1), 1–25. https://doi.org/10.1177/0022242919873106
Bernatovi?, I., Slavec Gomezel, A., & ?erne, M. (2022). Mapping the knowledge-hiding field and its future prospects: A bibliometric co-citation, co-word, and coupling analysis. Knowledge Management Research and Practice, 20(3), 394–409.
https://doi.org/10.1080/14778238.2021.1945963
Bhatia, A., Roy, B., & Kumar, A. (2022). A review of tourism sustainability in the era of Covid-19. Journal of Statistics and Management Systems, 25(8), 1871–1888. https://doi.org/10.1080/09720510.2021.1995196
Bhatt, Y., Ghuman, K., & Dhir, A. (2020). Sustainable manufacturing. Bibliometrics and content analysis. Journal of Cleaner Production, 260, 120988.
https://doi.org/10.1016/j.jclepro.2020.120988
Biswas, C., Deb, S. K., Hasan, A. A.-T., & Khandakar, Md. S. A. (2021). Mediating effect of tourists’ emotional involvement on the relationship between destination attributes and tourist satisfaction. Journal of Hospitality and Tourism Insights, 4(4), 490–510.
https://doi.org/10.1108/JHTI-05-2020-0075
Bordoloi, M., & Biswas, S. K. (2023). Sentiment analysis: A survey on design framework, applications and future scopes. Artificial Intelligence Review, 56(11), 12505–12560. https://doi.org/10.1007/s10462-023-10442-2
Centobelli, P., & Ndou, V. (2019). Managing customer knowledge through the use of big data analytics in tourism research. Current Issues in Tourism, 22(15), 1862–1882.
https://doi.org/10.1080/13683500.2018.1564739
Chen, N. (2020). Application of big data technology in smart tourism. Journal of Physics: Conference Series, 1648(4), 1648–1655. IOP Publishing Ltd.
https://doi.org/10.1088/1742-6596/1648/4/042101
Cheung, C. M. K., & Thadani, D. R. (2012). The impact of electronic word-of-mouth communication: A literature analysis and integrative model. Decision Support Systems, 54(1), 461–470. https://doi.org/10.1016/j.dss.2012.06.008
Comerio, N., & Strozzi, F. (2019). Tourism and its economic impact: A literature review using bibliometric tools. Tourism Economics, 25(1), 109–131.
https://doi.org/10.1177/1354816618793762
Crawley, H., & Hagen-Zanker, J. (2019). Deciding where to go: Policies, people and perceptions shaping destination preferences. International Migration, 57(1), 20–35.
https://doi.org/10.1111/imig.12537
Donthu, N., Kumar, S., & Pattnaik, D. (2020). Forty-five years of Journal of Business Research: A bibliometric analysis. Journal of Business Research, 109, 1–14.
https://doi.org/10.1016/j.jbusres.2019.10.039
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
El-Said, O. A. (2020). Impact of online reviews on hotel booking intention: The moderating role of brand image, star category, and price. Tourism Management Perspectives, 33, 100604. https://doi.org/10.1016/j.tmp.2019.100604
Ferreira, M. P., Santos, J. C., de Almeida, M. I. R., & Reis, N. R. (2014). Mergers & acquisitions research: A bibliometric study of top strategy and international business journals, 1980-2010. Journal of Business Research, 67(12), 2550–2558.
https://doi.org/10.1016/j.jbusres.2014.03.015
George, R. (2021). Marketing tourism and hospitality: Concepts and cases. Springer Nature.
Guo, Y., Barnes, S. J., & Jia, Q. (2017). Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation. Tourism Management, 59, 467–483. https://doi.org/10.1016/j.tourman.2016.09.009
Habbat, N., & Nouri, H. (2024). Unlocking travel narratives: A fusion of stacking ensemble deep learning and neural topic modeling for enhanced tourism comment analysis. Social Network Analysis and Mining, 14(82), 1–24. https://doi.org/10.1007/s13278-024-01256-3
Hao, A. W., Paul, J., Trott, S., Guo, C., & Wu, H. H. (2021). Two decades of research on nation branding: A review and future research agenda. International Marketing Review, 38(1), 46–69. https://doi.org/10.1108/IMR-01-2019-0028
Jain, P. K., Pamula, R., & Srivastava, G. (2021). A systematic literature review on machine learning applications for consumer sentiment analysis using online reviews. Computer Science Review, 41, 100413. https://doi.org/10.1016/j.cosrev.2021.100413
Jia, S. (2020). Motivation and satisfaction of Chinese and U.S. tourists in restaurants: A cross-cultural text mining of online reviews. Tourism Management, 78, 104071. https://doi.org/10.1016/j.tourman.2019.104071
Joudeh, J. M. M., & Dandis, A. O. (2018). Service quality, customer satisfaction and loyalty in an internet service providers. International Journal of Business and Management, 13(8), 108–120. https://doi.org/10.5539/ijbm.v13n8p108
Leelawat, N., Jariyapongpaiboon, S., Promjun, A., Boonyarak, S., Saengtabtim, K., Laosunthara, A., Yudha, A. K., & Tang, J. (2022). Twitter data sentiment analysis of tourism in Thailand during the COVID-19 pandemic using machine learning. Heliyon, 8(10), e10894. https://doi.org/10.1016/j.heliyon.2022.e10894
Leung, A., Burke, M., Cui, J., & Perl, A. (2019). Fuel price changes and their impacts on urban transport–a literature review using bibliometric and content analysis techniques, 1972–2017. Transport Reviews, 39(4), 463–484.
https://doi.org/10.1080/01441647.2018.1523252
Li, H., Ye, Q., & Law, R. (2013). Determinants of customer satisfaction in the hotel industry: An Application of online review analysis. Asia Pacific Journal of Tourism Research, 18(7), 784–802. https://doi.org/10.1080/10941665.2012.708351
Liu, W., Wang, J., Li, C., Chen, B., & Sun, Y. (2019). Using bibliometric analysis to understand the recent progress in agroecosystem services research. Ecological Economics, 156, 293–305. https://doi.org/10.1016/j.ecolecon.2018.09.001
Liu, Y., Teichert, T., Rossi, M., Li, H., & Hu, F. (2017). Big data for big insights: Investigating language-specific drivers of hotel satisfaction with 412,784 user-generated reviews. Tourism Management, 59, 554–563. https://doi.org/10.1016/j.tourman.2016.08.012
Manes, E., & Tchetchik, A. (2018). The role of electronic word of mouth in reducing information asymmetry: An empirical investigation of online hotel booking. Journal of Business Research, 85, 185–196. https://doi.org/10.1016/j.jbusres.2017.12.019
Marine-Roig, E. (2019). Destination image analytics through traveller-generated content. Sustainability, 11(12), 3392. https://doi.org/10.3390/su11123392
Marine-Roig, E., & Anton Clavé, S. (2015). Tourism analytics with massive user-generated content: A case study of Barcelona. Journal of Destination Marketing and Management, 4(3), 162–172. https://doi.org/10.1016/j.jdmm.2015.06.004
Meharwade, A., & Patil, G. A. (2016). Efficient keyword search over encrypted cloud data. Physics Procedia, 78, 139–145. Elsevier B.V.
https://doi.org/10.1016/j.procs.2016.02.023
Mohammed Abubakar, A. (2016). Does eWOM influence destination trust and travel intention: A medical tourism perspective. Economic Research-Ekonomska Istrazivanja , 29(1), 598–611. https://doi.org/10.1080/1331677X.2016.1189841
Mora, L., Deakin, M., & Reid, A. (2019). Combining co-citation clustering and text-based analysis to reveal the main development paths of smart cities. Technological Forecasting and Social Change, 142, 56–69. https://doi.org/10.1016/j.techfore.2018.07.019
Morwinsky, S. (2023). Industries & markets - travel & tourism: Market data & analysis - market insights report. New York. Retrieved from https://www.statista.com/study/40460/travel-tourism/
Mtapuri, O., & Giampiccoli, A. (2019). Tourism, community-based tourism and ecotourism: A definitional problematic. South African Geographical Journal, 101(1), 22–35. https://doi.org/10.1080/03736245.2018.1522598
Nielbo, K. L., Karsdorp, F., Wevers, M., Lassche, A., Baglini, R. B., Kestemont, M., & Tahmasebi, N. (2024). Quantitative text analysis. Nature Reviews Methods Primers, 4(1), 1–16. https://doi.org/10.1038/s43586-024-00302-w
Nilashi, M., Ali Abumalloh, R., Alrizq, M., Alghamdi, A., Samad, S., Almulihi, A., … Mohd, S. (2022). What is the impact of eWOM in social network sites on travel decision-making during the COVID-19 outbreak? A two-stage methodology. Telematics and Informatics, 69, 101795. https://doi.org/10.1016/j.tele.2022.101795
Park, E., Kang, J., Choi, D., & Han, J. (2020). Understanding customers’ hotel revisiting behaviour: A sentiment analysis of online feedback reviews. Current Issues in Tourism, 23(5), 605–611. https://doi.org/10.1080/13683500.2018.1549025
Pattnaik, D., Hassan, M. K., Kumar, S., & Paul, J. (2020). Trade credit research before and after the global financial crisis of 2008 – A bibliometric overview. Research in International Business and Finance, 54, 101287. https://doi.org/10.1016/j.ribaf.2020.101287
Preko, A., Mohammed, I., Gyepi-Garbrah, T. F., & Allaberganov, A. (2021). Islamic tourism: Travel motivations, satisfaction and word of mouth, Ghana. Journal of Islamic Marketing, 12(1), 124–144. https://doi.org/10.1108/JIMA-04-2019-0082
Radojevic, T., Stanisic, N., & Stanic, N. (2017). Inside the rating scores: A multilevel analysis of the factors influencing customer satisfaction in the hotel industry. Cornell Hospitality Quarterly, 58(2), 134–164. https://doi.org/10.1177/1938965516686114
Rojas-Lamorena, Á. J., Del Barrio-García, S., & Alcántara-Pilar, J. M. (2022). A review of three decades of academic research on brand equity: A bibliometric approach using co-word analysis and bibliographic coupling. Journal of Business Research, 139, 1067–1083. https://doi.org/10.1016/j.jbusres.2021.10.025
Škare, M., Soriano, D. R., & Porada-Rocho?, M. (2021). Impact of COVID-19 on the travel and tourism industry. Technological Forecasting and Social Change, 163, 120469. https://doi.org/10.1016/j.techfore.2020.120469
Suhartanto, D., Brien, A., Primiana, I., Wibisono, N., & Triyuni, N. N. (2020). Tourist loyalty in creative tourism: The role of experience quality, value, satisfaction, and motivation. Current Issues in Tourism, 23(7), 867–879.
https://doi.org/10.1080/13683500.2019.1568400
Tran, G. A., & Strutton, D. (2020). Comparing email and SNS users: Investigating e-servicescape, customer reviews, trust, loyalty and E-WOM. Journal of Retailing and Consumer Services, 53, 101782. https://doi.org/10.1016/j.jretconser.2019.03.009
Travel & Tourism Economic Impact 2019. (2019). Retrieved from https://www.un.org/development/desa/en/news/population/2018-revision-of-worldurbanization-prospects.html
Tribe, J. (2011). The economics of recreation, leisure and tourism (4th ed.). Oxford: Elsevier.
UNWTO 2016 Annual Report. (2017). Madrid.
https://doi.org/https://doi.org/10.18111/9789284418725
Xu, H., & Lv, Y. (2022). Mining and application of tourism online review text based on natural language processing and text classification technology. Wireless Communications and Mobile Computing, 2022(1), 1–13. https://doi.org/10.1155/2022/9905114
Yan, H., Ma, M., Wu, Y., Fan, H., & Dong, C. (2022). Overview and analysis of the text mining applications in the construction industry. Heliyon, 8(12), e12088. https://doi.org/10.1016/j.heliyon.2022.e12088
Zhang, H., Guo, T., & Su, X. (2021). Application of big data technology in the impact of tourism e-commerce on tourism planning. Complexity, 2021(1), 1–10. https://doi.org/10.1155/2021/9925260
Prihananto, P., Noer, L. R., Ninglasari, S. Y., & Rai, N. G. M. (2024). Satisfaction and User Reviews in Tourism Using Big Data and Text Mining: A Bibliometric Study. International Journal of Academic Research in Business and Social Sciences, 14(12), 2194–2210.