This systematic review critically evaluates the application of new technologies such as digital twins, digital platforms, smart contracts, and supply chain control towers in supply chain digital transformation (SCDT). It aims to fill the gap in the existing literature by exploring their roles, challenges, and future trends, thereby providing academia and practitioners with strategic insights for successful implementation and enhanced digital project outcomes. Employing the PRISMA framework, this study scrutinizes a select cohort of 73 out of 10,847 articles from the Scopus and Web of Science (WOS) databases over the past decade. It systematically categorizes and analyzes the literature to trace publication trends, geographical distribution, current status and keywords, and future trends. The review identifies several new technologies increasingly pivotal in modern supply chains. The researchers delve into less explored areas, such as digital twins, smart contracts, and supply chain control towers (SSCT), highlighting their potential to revolutionize digital transformation. The analysis reveals these technologies as new trends with significant implications for future supply chain management (SCM). This review provides new insights into uses and predicts trends in technology development. It offers a forward-looking perspective that lays a foundational framework for subsequent research and practical deployments in digital transformation.
Abouzid, I., & Saidi, R. (2023). Digital twin implementation approach in supply chain processes. Scientific African, 21.
Bhattarai, U., Maraseni, T., & Apan, A. (2022). Assay of renewable energy transition: A systematic literature review. Science of The Total Environment, 833, 155159.
Bhatti, S. H., Ahmed, A., Ferraris, A., Hirwani Wan Hussain, W. M., & Wamba, S. F. (2022). Big data analytics capabilities and MSME innovation and performance: A double mediation model of digital platform and network capabilities. Annals of Operations Research.
Bosi, I., Rosso, J., Ferrera, E., & Pastrone, C. (2020). IIot platform for agile manufacturing in plastic and rubber domain. In Wills G., Kacsuk P., & Chang V. (Eds.), IoTBDS - Proc. Int. Conf. Internet Things, Big Data Secur, 436–444.
Bramer, W. M., De Jonge, G. B., Rethlefsen, M. L., Mast, F., & Kleijnen, J. (2018). A systematic approach to searching: An efficient and complete method to develop literature searches. Journal of the Medical Library Association, 106(4), 531–541.
Chen, S., Cohen, M. A., & Lee, H. (2024). Enhancing customer–supplier coordination through customer-managed inventory. Management Science, mnsc.2021.03658.
Chowdhury, M. M. H., Scerri, M., Shahriar, S., & Skellern, K. (2023). Digital transformation of supply chain: A study on additive manufacturing practice in medical device in australia. Journal of Enterprise Information Management.
Das, A., & Dey, S. (2021). Global manufacturing value networks: Assessing the critical roles of platform ecosystems and industry 4.0. Journal of Manufacturing Technology Management, 32(6), 1290–1311.
Echchakoui, S. (2020). Why and how to merge scopus and web of science during bibliometric analysis: The case of sales force literature from 1912 to 2019. Journal of Marketing Analytics, 8(3), 165–184.
E-Fatima, K., Khandan, R., Hosseinian-Far, A., Sarwar, D., & Ahmed, H. F. (2022). Adoption and influence of robotic process automation in beef supply chains. Logistics, 6(3).
El Jaouhari, A., Arif, J., Samadhiya, A., Kumar, A., & Garza-Reyes, J. A. (2023). An environmental-based perspective framework: Integrating IoT technology into a sustainable automotive supply chain.
Gai, K., Zhang, Y., Qiu, M., & Thuraisingham, B. (2023). Blockchain-enabled service optimizations in supply chain digital twin. IEEE Transactions on Services Computing, 16(3), 1673–1685.
Gupta, N., Tiwari, A., Bukkapatnam, S. T. S., & Karri, R. (2020). Additive manufacturing cyber-physical system: Supply chain cybersecurity and risks. IEEE Access, 8, 47322–47333.
Hamledari, H., & Fischer, M. (2021). Measuring the impact of blockchain and smart contracts on construction supply chain visibility. Advanced Engineering Informatics, 50.
Huliahina, O. (2022). Digital transformation of supply chains in the modern conditions of a changing environment. Vestnik of Polotsk State University Part D Economic and Legal Sciences, 62(12), 16–19.
Idrissi, Z. K., Lachgar, M., & Hrimech, H. (2022). Blockchain, IoT and AI revolution within transport and logistics. In Jawab F. & El Farouk I.I. (Eds.), IEEE Int. Conf. Logist. Supply Chain Manag., LOGISTIQUA. Institute of Electrical and Electronics Engineers Inc.
Kaivo-Oja, J., Kuusi, O., Knudsen, M. S., & Lauraéus, I. T. (2020). Digital twin: Current shifts and their future implications in the conditions of technological disruption. International Journal of Web Engineering and Technology, 15(2), 170–188.
Kaur, G., Shrivastava, R., & Gupta, U. (2024). Blockchain integration with internet of things (IoT)-based systems for data security: A review. In Swaroop A., Polkowski Z., Correia S.D., & Virdee B. (Eds.), Lect. Notes Networks Syst, 617–625.
Khan, K. S., Kunz, R., Kleijnen, J., & Antes, G. (2003). Five steps to conducting a systematic review. Journal of the Royal Society of Medicine, 96(3), 118–121.
Liu, J., Chen, L., & Liu, R. (2021). Research on multi-center intelligent manufacturing sharing cloud platform of furniture manufacturing enterprises. Journal of Forestry Engineering, 6(3), 166–170.
Liu, S. (2021). Research on the application and development of digital supply chain using internet of things and big data technology. ACM Int. Conf. Proc. Ser., 2550–2553.
Lu, Y. (2021). Big data and supply chain digital transformation. Proc. - Int. Conf. Big Data Econ. Inf. Manag., BDEIM, 242–245.
Machado, E., Scavarda, L. F., Caiado, R. G. G., & Thomé, A. M. T. (2021). Barriers and enablers for the integration of industry 4.0 and sustainability in supply chains of MSMEs. Sustainability, 13(21), 11664.
Maheshwari, P., Kamble, S., Kumar, S., Belhadi, A., & Gupta, S. (2023). Digital twin-based warehouse management system: A theoretical toolbox for future research and applications. International Journal of Logistics Management.
Mahraz, M., Benabbou, L., & Berrado, A. (2022). Machine learning in supply chain management: A systematic literature review. International Journal of Supply and Operations Management, 9(Online First), 398–416.
Mypati, O., Mukherjee, A., Mishra, D., Pal, S. K., Chakrabarti, P. P., & Pal, A. (2023). A critical review on applications of artificial intelligence in manufacturing. Artificial Intelligence Review, 56, 661–768.
Ngo, V. M., Pham, H. C., & Nguyen, H. H. (2023). COVID-19 disruption risk—a game-changing factor for SMEs digital supply chain transformation. In N. H. Thuan, H. Nguyen, H. C. Pham, & A. Halibas (Eds.), Business Innovation for the Post-pandemic Era in Vietnam, 35–45.
Nguyen, V. D., Pham, T. C., Le, C. H., Huynh, T. T., Le, T. H., & Packianather, M. (2023). An innovative and smart agriculture platform for improving the coffee value chain and supply chain. In Stud. Comput. Intel, 185–197.
Nozari, H., Szmelter-jarosz, A., & Ghahremani-nahr, J. (2022). Analysis of the challenges of Artificial Intelligence of Things (AIoT) for the smart supply chain (Case Study: FMCG Industries). Sensors, 22(8).
Nylander, E., Ramstrand, N., Hjort, M., & Rusaw, D. F. (2021). Development and validation of a sensitive MEDLINE search strategy to identify literature relevant to limb prostheses. Prosthetics & Orthotics International, 45(3), 289–294.
Özkanl?soy, Ö., & Akkartal, E. (2021). Digital transformation in supply chains: Current applications, contributions and challenges. Business & Management Studies: An International Journal, 9(1), 32–55.
Pan, C., & Liu, M. (2021). Optimization of intelligent logistics supply chain management system based on wireless sensor network and RFID technology. Journal of Sensors, 2021.
Patil, A., Dwivedi, A., & Abdul Moktadir, M. (2023). Big data-industry 4.0 readiness factors for sustainable supply chain management: Towards circularity. Computers and Industrial Engineering, 178.
Peng, X., Zhang, X., Wang, X., Li, H., Xu, J., Zhao, Z., & Wang, Y. (2022). Research on the cross-chain model of rice supply chain supervision based on parallel blockchain and smart contracts. Foods, 11(9).
Perez, H. D., Wassick, J. M., & Grossmann, I. E. (2022). A digital twin framework for online optimization of supply chain business processes. Computers and Chemical Engineering, 166.
Pranckut?, R. (2021). Web of science (WoS) and scopus: The titans of bibliographic information in today’s academic world. Publications, 9(1), Article 1.
Pratap, S., Jauhar, S. K., Gunasekaran, A., & Kamble, S. S. (2024). Optimizing the IoT and big data embedded smart supply chains for sustainable performance. Computers and Industrial Engineering, 187.
Radke, A. M., Dang, M. T., & Tan, W. K. A. (2020). Using robotic process automation (RPA) to enhance item master data maintenance process. Logforum, 16(1), 129–140.
Ramanathan, U. (2016). How smart operations help better planning and replenishment?: Empirical study—Supply chain collaboration for smart operations. In Supply Chain Manag. In the Big Data Era, 25–49.
Rana, J., & Daultani, Y. (2023). Mapping the role and impact of artificial intelligence and machine learning applications in supply chain digital transformation: A bibliometric analysis. Operations Management Research, 16(4), 1641–1666.
Rasool, F., Greco, M., & Grimaldi, M. (2022). Digital supply chain performance metrics: A literature review. Measuring Business Excellence, 26(1), 23–38.
Rekha Sree, M., Vani, M., & Saturi, S. (2021). An effective analytics with time series based forecasting as key machine learning-based implementation. Materials Today: Proceedings.
Rethlefsen, M. L., Kirtley, S., Waffenschmidt, S., Ayala, A. P., Moher, D., Page, M. J., Koffel, J. B., Blunt, H., Brigham, T., Chang, S., Clark, J., Conway, A., Couban, R., de Kock, S., Farrah, K., Fehrmann, P., Foster, M., Fowler, S. A., Glanville, J., … PRISMA-S Group. (2021). PRISMA-S: An extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Systematic Reviews, 10(1), 39.
Rushiana, R. A., Sumarna, O., & Anwar, S. (2023). Efforts to develop students’ critical thinking skills in chemistry learning: Systematic literature review. Jurnal Penelitian Pendidikan IPA, 9(3), Article 3.
Sabri, E. (2023). How to master change management during the supply chain digital transformation journey: Advances in Logistics, Operations, and Management Science Book Series, 1–20.
Shehadeh, M., Al-Gasaymeh, A. S., Ahmad Almahadin, H., Rustom Al Nasar, M., & Al-Trad, E. B. (2023). The blockchain technology integration with internet of things for digital supply chain transformation. Int. Conf. Bus. Anal. Technol. Secur., ICBATS. 2nd International Conference on Business Analytics for Technology and Security, ICBATS 2023.
Srivastava, P., Ansari, H., Alrasheedi, M., Sharma, R., Prakash, S., & Gupta, S. (2024). Leveraging supply chain collaboration with digital technologies for supply chain performance: An empirical investigation of Indian meat industries. International Journal of Food Science and Technology, 59(5), 3514–3522.
Tambuskar, D. P., Jain, P., & Narwane, V. S. (2023). An exploration into the factors influencing the implementation of big data analytics in sustainable supply chain management.
Thelwall, M., Kousha, K., Abdoli, M., Stuart, E., Makita, M., Wilson, P., & Levitt, J. M. (2022). In which fields are citations indicators of research quality? Journal of the Association for Information Science and Technology, 74, 941–953.
Thomassey, S., & Zeng, X. (2021). FBD_Bmodel digital platform: A web-based application for demand driven fashion supply chain. In Dolgui A., Bernard A., Lemoine D., von Cieminski G., & Romero D. (Eds.), IFIP Advances in Information and Communication Technology: Vol. 630 IFIP, 21–30.
Tsai, W.-C., & Shen, C.-W. (2024). Using a smart contract for the floral supply chain. Asia Pacific Management Review.
Tsolakis, N., Schumacher, R., Dora, M., & Kumar, M. (2023). Artificial intelligence and blockchain implementation in supply chains: A pathway to sustainability and data monetisation? Annals of Operations Research, 327(1), 157–210.
Ullah, I., Shukla, J. V., & Singh, D. K. (2023). The applications, opportunities and challenges of IoT in supply chain management: Insights from literature review. Int. Conf. Emerg. Trends Eng. Technol., ICETET, 2023-April, 1–5.
Vafadarnikjoo, A., Badri Ahmadi, H., Liou, J. J. H., Botelho, T., & Chalvatzis, K. (2023). Analyzing blockchain adoption barriers in manufacturing supply chains by the neutrosophic analytic hierarchy process. Annals of Operations Research, 327(1), 129–156.
Van Dinter, R., Tekinerdogan, B., & Catal, C. (2021). Automation of systematic literature reviews: A systematic literature review. Information and Software Technology, 136, 106589.
Viale, L., & Zouari, D. (2020). Impact of digitalization on procurement: The case of robotic process automation. Supply Chain Forum, 21(3), 185–195.
Vlachos, I. (2023). Implementation of an intelligent supply chain control tower: A socio-technical systems case study. Production Planning and Control, 34(15), 1415–1431.
Voipio, V., Elfvengren, K., Korpela, J., & Vilko, J. (2023). Driving competitiveness with RFID-enabled digital twin: Case study from a global manufacturing firm’s supply chain. Measuring Business Excellence, 27(1), 40–53.
Wisetsri, W., Donthu, S., Mehbodniya, A., Vyas, S., Quiñonez-Choquecota, J., & Neware, R. (2022). An investigation on the impact of digital revolution and machine learning in supply chain management. Materials Today: Proceedings, 56, 3207–3210.
Wu, L., Xu, D., Li, K., Xiao, W., & Gong, Y. (2020). The revolutionary change of big data on intelligent logistics. In Tianran W., Tianyou C., Huitao F., & Qifeng Y. (Eds.), Proc SPIE Int Soc Opt Eng (Vol. 11427).
Xiang, L., & Hou, R. (2023). Research on innovation management of enterprise supply chain digital platform based on blockchain technology. Sustainability (Switzerland), 15(13).
Yousif Alsharidah, Y. M., & Alazzawi, A. (2020). Artificial intelligence and digital transformation in supply chain management a case study in saudi companies. Int. Conf. Data Anal. Bus. Ind.: Way Towards Sustain. Econ., ICDABI, 1–6.
Zhang, H., & Li, Z. (2023). RFID supply chain data deconstruction method based on artificial intelligence technology. Open Computer Science, 13(1).
Zhang, M., Yang, W., Zhao, Z., Pratap, S., Wu, W., & Huang, G. Q. (2023). Is digital twin a better solution to improve ESG evaluation for vaccine logistics supply chain: An evolutionary game analysis. Operations Management Research, 16(4), 1791–1813.
Zhong, Z. Z., & Zhao, E. Y. (2024). Collaborative driving mode of sustainable marketing and supply chain management supported by metaverse technology. IEEE Transactions on Engineering Management, 71, 1642–1654.
Li, N., Miskon, S., Jamal, N. M., Shanshan, Yue, & Zhang, Q. (2024). Application of New Technologies in Supply Chain Digital Transformation: A Systematic Literature Review and Future Research Directions. International Journal of Academic Research in Business and Social Sciences, 14(12), 1994–2009.
Copyright: © 2024 The Author(s)
Published by Knowledge Words Publications (www.kwpublications.com)
This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at: http://creativecommons.org/licences/by/4.0/legalcode