International Journal of Academic Research in Business and Social Sciences

search-icon

Multimodal Inquiry Learning Framework in Meaning-Making of The Concept of Force

Open access
Past studies have shown that the interactions that appear between existing knowledge and new knowledge of students will result in a conceptual change in students. However, the process of conceptual change is complex and requires careful planning by teachers. In this concept paper, the constructed Multimodal Inquiry Learning (MIL) framework introduced the physics topic of force studied by matriculation students in the first semester of their studies. Learning that involves verbal and non-verbal communication is a common feature of multimodal learning. While inquiry learning uses various modes of communication including verbal, visual, pictorial, graphic, and text is called multimodal inquiry learning. Past studies have proven that multimodal representation is found to play a role in the conceptual change for the concept of heat, but how the conceptual change takes place in the student's mind through meaning-making has yet to be explained by them. The MIL framework suggested by this study is expected to help physics teachers/lecturers, especially in improving their pedagogical practices.
Tarmimi, A. I., & Kadri, S. A. (2016). Tahap kefahaman dan salah konsep terhadap konsep daya dan gerakan dalam kalangan pelajar tingkatan empat. Jurnal Fizik Malaysia, 37(1), 01090–01101.
Halim, A. D. (2020). Perwakilan multimodal dalam perubahan konseptual konsep haba bagi pembelajaran fizik. Tesis Doktor Falsafah. Universiti Teknologi Malaysia, Skudai.
Fadaei, A. S., & Mora, C. (2015). An investigation about misconceptions in force and motion in high school. US-China Education Review, 5(1), 38–45.
Bahagian Pembangunan Kurikulum (BPK). (2016). Panduan pelaksanaan sains, teknologi, kejuruteraan dan matematik (STEM) dalam pengajaran dan pembelajaran. Putrajaya: Kementerian Pendidikan Malaysia.
Bahagian Pembangunan Kurikulum (BPK). (2018). Kurikulum standard sekolah menengah: fizik tingkatan 4 dan 5. Putrajaya: Kementerian Pendidikan Malaysia.
Bani-Salameh, H. N. (2017). How persistent are the misconceptions about force and motion held by college students? Physics Education, 52(1), 1–7.
Celik, A., & Kilic, Z. (2014). The impact of argumentation on high school chemistry students’ conceptual understanding, attitude towards chemistry and argumentativeness. Eurasian Journal of Physics and Chemistry Education, 6(1), 58–75.
Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning teaching and learning. International Journal of Science Education, 25(6), 671–688.
Flood, V. J. (2021). The secret multimodal life of IREs: Looking more closely at representational gestures in a familiar questioning sequence. Linguistics and Education, 63, 1–21.
Halim, L., Yong, T. K., & Meerah, T. S. M. (2014). Overcoming students’ misconceptions on forces in equilibrium: an action research study. Creative Education, 05(11), 1032–1042.
Hewson, M. G., & Hewson, P. W. (1983). Effect of instruction using students’ prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 20(8), 731–743.
Kamarrudin, H., Lilia, H., & Mohtar, L. E. (2020). Sumbangan Penguasaan Asas Fizik Dan Matematik Terhadap Keupayaan Pengaplikasian Fizik Bagi Topik Mekanik Tingkatan Enam. Jurnal Fizik Malaysia, 41(1), 10037–10050.
Kementerian Pendidikan Malaysia (KPM). (2013). Ringkasan Eksekutif Pelan Pembangunan Pendidikan Malaysia 2013-2025. Putrajaya: Kementerian Pendidikan Malaysia.
Kewalramani, S., & Veresov, N. (2021). Multimodal Creative Inquiry: Theorising a New Approach for Children’s Science Meaning-Making in Early Childhood Education. Research in Science Education, 52, 927–947.
Liu, G., & Fang, N. (2016). Student misconceptions about force and acceleration in physics and engineering mechanics education. International Journal of Engineering Education, 32(1), 19–29.
Mason, L. (2001). Introducing talk and writing for conceptual change: A classroom study. Learning and Instruction, 11(4–5), 305–329.
Morawski, C. M., & Rottmann, J. (2016). Multimodal narrative inquiry: Six teacher candidates respond. International Journal of Education and the Arts, 17, 1–30.
Mortimer, E. ., Scott, P., & El-Hani, C. N. (2012). The Heterogeneity of Discourse in Science Classrooms: The Conceptual Profile Approach. In Second International Handbook of Science Education (pp. 771–782). New York: Springer Science and Business Media.
Nie, Y., Xiao, Y., Fritchman, J. C., Liu, Q., Han, J., Xiong, J., & Bao, L. (2019). Teaching towards knowledge integration in learning force and motion. International Journal of Science Education, 41(16), 2271–2295.
Park, J., Tang, K. S., & Chang, J. (2021). Plan?Draw?Evaluate (PDE) pattern in students’ collaborative drawing: Interaction between visual and verbal modes of representation. Science Education, 105(January 2020), 1013–1045.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227.
Rahayu, T., Syafril, S., Osman, K., Halim, L., Syed Zakaria, S. Z., Tuan Soh, T. M., & Yaumas, N. E. (2005). Kualiti Guru, Isu dan Cabaran dalam Pembelajaran STEM. Journal of General Studies, 12(November), 1–32.
Ratnasari, D., Sukarmin, & Suparmi, S. (2017). Effect of problem type toward students’ conceptual understanding level on heat and temperature. Journal of Physics: Conference Series, 909(1).
Saouma, D., Bahous, R., Natout, M., & Nabhani, M. (2018). Figures of speech in the physics classroom: a process of conceptual change. Research in Science and Technological Education, 36(3), 375–390.
Smith, E. L., Blakeslee, T. D., & Anderson, C. W. (1993). Teaching strategies associated with conceptual change learning in Science. Journal of Research in Science Teaching, 30(2), 111–126.
Stein, B., Haynes, A., Redding, M., Ennis, T., & Cecil, M. (2007). Assessing critical thinking in STEM and beyond. Innovations in E-Learning, Instruction Technology, Assessment, and Engineering Education, 79–82.
Stohlmann, M., Moore, T., & Roehrig, G. (2012). Considerations for Teaching Integrated STEM Education. Journal of Pre-College Engineering Education Research, 2(1), 28–34.
Tang, K. S., Delgado, C., & Moje, E. B. (2014). An integrative framework for the analysis of multiple and multimodal representations for meaning-making in science education. Science Education, 98(2), 305–326.
Tao, P. K., & Gunstone, R. F. (1999). The process of conceptual change in force and motion during computer-supported physics instruction. Journal of Research in Science Teaching, 36(7), 859–882.
Treagust, D. F., & Duit, R. (2008). Conceptual change: a discussion of theoretical, methodological and practical challenges for science education. Cultural Studies of Science Education, 3(2), 297–328.
Vosniadou, S. (2013). Conceptual Change in Learning and Instruction. In International Handbook of Research on Conceptual Change. New York and London: Routledge.
Williams, M., Tang, K.-S., & Won, M. (2019). ELL’s science meaning making in multimodal inquiry: a case-study in a Hong Kong bilingual school. Asia-Pacific Science Education, 5(3), 1–35.
Yelland, N. J. (2018). A pedagogy of multiliteracies: Young children and multimodal learning with tablets. British Journal of Educational Technology, 49(5), 847–858.
Zakaria, N. S., Azhan, N., Azmi, N., & Baharudin, H. (2019). Kemahiran Komunikasi Bukan Lisan: Satu Kajian Terhadap Guru Pelatih Bukan Opsyen Dalam Pengajaran Bahasa Arab. 3(2), 1–10.