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Abstract 
Poly (2,6-dimethyl-1,4-phenylene oxide)(PPO) was successfully converted into hollow fiber 
carbon membrane for H2/N2 separation study. The ideal separation parameters were 
enhanced by tuning the pyrolysis temperature, heating rate, and thermal soak time utilizing 
the Robeson’s 2008 upperbound and commercial boundary to obtain maximum balanced 
point between permeability and ideal selectivity. Using this approach, the optimum H2 
permeability and H2/N2 ideal selectivity was 2868 Barrer and 586, respectively. SEM images 
depicted the surface of the PPO and carbon membranes were both dense, non-porous, 
symmetrical, and homogeneous. The estimated thickness of the carbon membranes was 14-
15 µm. The permeability study indicated that the transport mechanism of the H2 across the 
membrane layer was dominated by molecular sieving. Excessively high or very low pyrolysis 
temperature reduced the H2 permeability and H2/N2 ideal selectivity. The H2/N2 ideal 
selectivity decreased against increasing heating rate as the H2 and N2 permeabilities increased 
significantly. Thermal soak time was highly effective in increasing the H2 permeability and 
H2/N2 ideal selectivity. Both H2 permeabilities and H2/N2 permselectivity from the binary test 
were considerably lower than the ideal separation values due to competitive gas transport 
through the membrane pore which was completely dominated by the larger N2. 
Keywords: H2/N2 Separation, Poly(2,6-dimethyl-1,4-phenylene oxide), Poly(p-phenylene 
oxide), Optimization, Carbon Membrane. 
 
Introduction  

Owing to low capital costs and high efficiency in energy consumption, membrane 
technology in gas separation has been considered as a competitive alternative to replace or 
integrate with the existing conventional technology such as pressure swing adsorption, 
cryogenic distillation, and amine absorption (Ismail & David, 2001). Inorganic membranes, 
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such as carbon membranes, which have good thermal and chemical resistance compared to 
polymeric membranes, have attracted increasing interest for gas separation under extreme 
conditions. Such robust membranes are highly promising in natural gas processing, landfill gas 
recovery, hydrogen recovery, olefin/paraffin separation, and air separation (Bhide & Stern, 
1993; Kim, Park, & Lee, 2003; Koros & Mahajan, 2000; White, Blinka, Kloczewski, & Wang, 
1995). 
 

In early development, most of the carbon membranes showed attractive high 
selectivity but normally at the expense of very low permeability (Ismail & David, 2001). After 
years of development, carbon membrane has demonstrated significant progress towards a 
more balanced performance, exhibiting both high selectivity and permeability. The capability 
for separation behavior, known as molecular sieving, is attributed to the pore size 
approaching the size of diffusing molecules and high porosity, thereby providing massive 
channels for the diffusion. This turbostratic structure of the carbon membrane can 
discriminate gases with similar kinetic diameters, such as O2 and N2. 
 

The development of carbon membranes encompasses several critical variables, such 
as polymer precursor selection, pyrolysis temperature, heating rate, thermal soaking time, 
and heating atmosphere. Other variables include polymer structure modification, secondary 
materials, polymer solution concentration, and permeation conditions. In general, the 
common polymer precursors used for fabricating carbon membranes can be divided into 
polyimides and non-polyimides. Examples of polyimides are Kapton (Hatori, Yamada, & 
Shiraishi, 1992; Suda & Haraya, 1995), 6FDA-based polyimide (Geiszler & Koros, 1996; Jones 
& Koros, 1994; Ma, Lin, Wei, & Kniep, 2016), polyimide BPDA-pp’ODA (Hayashi, Mizuta, 
Yamamoto, Kusakabe, & Morooka, 1997), polyimide BPDA/pPDA (Fuertes & Centeno, 1998), 
polyimide BPDA-DDBT/DABA (Okamoto et al., 1999), and Matrimid (Sazali et al., 2015). 
Considering the high cost of most of the polyimides, alternatives and non-polyimide polymers 
have been used, such as poly(vinylidene chloride) (Rao & Sircar, 1993), poly(furfuryl alcohol) 
(Acharya at al., & Lerou, 1997; Chen & Yang, 1994), phenolic resin (Centeno & Fuertes, 1999; 
Katsaros et al., 1997), poly(p-phenylene oxide) (Yoshimune, Fujiwara, Suda, & Haraya, 2005), 
and novolac resin (Tanco et al., 2015). 
 

Recently, hydrogen recovery has received attention because of the increasing demand 
for hydrogen, which is widely utilized in the petroleum industry, particularly hydroalkylation, 
hydrodesulfurization, and hydrocracking. Hydrogen is also regarded as an environmentally 
friendly energy carrier (Yun & Oyama, 2011). The hydrogen production requires separation 
and purification from other byproducts, such as N2 in ammonia production. The research 
progress on carbon membranes for H2/N2 separation is summarized in Figure 1, which 
presents several excellent carbon membranes. The highest H2 permeabilities were 6080 
Barrer (Wang, Zeng, & Wang, 1996), 5387 Barrer (Zhang et al., 2014), and 5100 Barrer 
(Shusen, Meiyun, & Zhizhong, 1996), which were produced using unsupported thin films of 
phenol-formaldehyde (PFR) and resorcinol-formaldehyde (RFR) resins as precursors. The 
highest H2/N2 permselectivities were 1086 (Campo, Magalhães, & Mendes, 2010), 725 (Llosa 
Tanco, Pacheco Tanaka, & Mendes, 2015), and 614.7 (Kita, Yoshino, Tanaka, & Okamoto, 
1997), which were produced using cellophane paper, tubular supported PFR/alumina, and 
thin-film polypyrrolone, respectively, as precursors. Llosa Tanco, Pacheco Tanaka, and 
Mendes (2015) fabricated an optimum carbon membrane that exhibited the best balance 
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between permeability and permselectivity, which were 1731.3 Barrer and 725, respectively, 
with respect to the Robeson’s 2008 upperbound (Robeson, 2008) and commercial boundary 
(Go, Lee, Shamsudin, Kim, & Othman, 2016). The membrane was produced by vacuum-
assisted dip-coating of mixture of PFR and boehmite sol, and then pyrolyzed at 550 °C with 
heating rate and thermal soaking time of 1 °C/min and 2 h, respectively. The membrane was 
aged for 24 h and reactivated before testing. The deposited water reacted with the carbon 
active sites and formed oxygen functional groups, which caused a decrease in pore size that 
effectively hindered the N2 diffusion. 
 

Improving the performance of the carbon membrane is to increase the membrane 
productivity and efficiency. The selectivity and permeability need to be balanced and it is 
unique for different gas separation. Too high selectivity but extremely low permeability or 
vice versa is undesirable. Previous works have suggested several ways to improve the 
performances by adding secondary materials (Li et al., 2015; Teixeira et al., 2014; Zhang et al., 
2015), discovering new materials (Itta & Tseng, 2011; Shusen et al., 1996; Zhang et al., 2009), 
altering the microstructure of the polymeric precursor (Li et al., 2014; Yoshimune et al., 2005). 
However, the values of the performance fall outside the desired region. Therefore, Robeson’s 
upperbound (Robeson, 2008) and the suggested boundary of commercially attractive (Go et 
al., 2016) as shown in Figure 1  can be used to guide the researchers to make sure the 
improvement of the permeability and selectivity is oriented to fall within the boundary and 
obtain the desired optimum points. From this point, necessary improvements such as addition 
of secondary materials can be continued accordingly. It has been reported that the 
microstructure of carbon membrane, in which eventually determines the gas diffusion and 
selectivity, can be controlled and adjusted by controlling the pyrolysis parameters which are 
pyrolysis temperature, heating rate and soak time (Saufi & Ismail, 2004). This work is to show 
that the carbon membrane pyrolysis and its corresponding performances can be directed into 
the optimum area of desirable permeability and selectivity. This is a simple and new approach 
to enhance the carbon membrane performance without integrating or introducing new 
secondary materials or creating new or micro-altering precursors. According to He and Hägg 
(2011), the pyrolysis temperature is the most dominant factor in affecting the permeability 
and ideal selectivity, followed by heating rate and thermal soak time which is used in this 
study. 
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Figure 1. H2/N2 performance of carbon membranes compared with the Robeson’s 2008 

upperbound. 
 

Research Methodology - Materials and Method 
The PPO powder was purchased from Sigma-Aldrich (US). A 20 wt% of PPO polymer 

solution was prepared using chloroform (purity 99.5%) as the solvent with vigorous stirring 
(1000 rpm) for 30 mins. Before it was spun into a hollow fiber polymeric membrane, the 
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polymer solution was left for 30 mins at room temperature. The polymer solution was spun 
into a hollow fiber with the following parameters: air gap: 25cm; polymer solution flowrate: 
0.25g/min; bore fluid: 125 ml/hr ethanol; receiving bath: ethanol. 
 

The freshly spun hollow fiber was left inside the bath for a day, cut, and dried in the 
oven for 30 mins. The fiber was thermostabilized at 240 °C for 45 mins under a continuous 
supply of air (50 ml/min) and followed by pyrolysis under continuous nitrogen supply (50 
ml/min). The pyrolysis temperature, heating rate, and thermal soak time were varied. All 
samples were kept inside a tight-closed desiccator. 
 

A scanning electron microscope (SEM, Model Quanta FEG 450, FEI, USA) was used to 
capture the images of the samples’ cross-sections to analyze the morphology and estimate 
their thickness. Since the carbon membrane was brittle, epoxy was used to coat the samples 
before it was broken. The samples were crushed into powder for X-ray diffraction (XRD, Model 
PW 1820, Philips, USA) analysis to analyze the crystallinity of the samples. Small fragments of 
the samples were sent for thermogravimetric (TGA, Model STA6000, Perkin Elmer, USA) 
analysis. 

 
A constant-pressure/variable-volume system was adopted to estimate the membrane 

flowrate in which a soap-bubble flow meter was used. For a single permeability test, the 
membrane fiber was bore-sided fed in which it was sealed at one end and opened at the other 
end to received pressurized gas. The test was beginning with H2, followed by CH4 and CO2. 
The H2 was also used to purge the membrane between the transitions from CH4 to CO2. The 
feed gauge pressure was 3.0 bar. The reading was taken after 18 hours of steady-state. 
 

For the binary mixture experiment, the membrane was open-ended at both ends. The 
schematic diagram is shown in Figure 2. The mixing tank was continuously purged to the 
atmosphere at 10ml/min to preserve the feed concentration. The concentration of the feed 
gas was tuned using flow rate controllers and fine-tuned using pressure regulators placed 
before the controllers. The retentate was controlled with a flow controller. 

 
Results and Discussion  
Morphology of the PPO and Carbon Membranes 

SEM images of the PPO and carbon membranes’ cross-sectional views were depicted 
in Figures 2 which indicated the membrane structures were non-porous, dense, 
homogeneous and symmetrical. The estimated thickness of the carbon membrane was 14-15 
µm. The change of the morphology is due to thermal rearrangement during the pyrolysis (Xu, 
Rungta, & Koros, 2011). It also involves partial decomposition of the polymer PPO in the 
thermostabilization stage and pyrolysis (Rivaton, 1995) as well as compaction (Sazali et al., 
2015). 
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Figure 2. Physical and SEM images of cross-sectional views of PPO membrane (a, b) and 
carbon membrane (c, d) 

 
Transport Mechanism of the Carbon Membranes 

In a carbon membrane, there are normally three possibilities of transport of gases 
molecules through its structure, which are Knudsen diffusion, selective surface diffusion, and 
molecular sieving, depending mostly on the nature of pore structure and pore size (Li, Wang, 
Liu, Cao, & Qiu, 2012). Figure 3 shows the permeabilities of H2, CO2, O2, CH4, and N2 for the 
carbon membranes pyrolyzed at 500 °C (CM500), 600 °C (CM600), and 700 °C (CM700) with 
a heating rate and thermal soak time of 1 °C/min and 0.25 hr, respectively. PPOM 
permeabilities were included for comparison purposes. The order of the gas on the x-axis was 
arranged according to the order of the gas kinetic diameters starting from the smallest (H2) 
to the largest (CH4). The decreasing trend of the permeabilities against the increasing kinetic 
diameter of the gases, as shown by the PPOM and CM600, suggested that the transport 
mechanism was governed by the molecular sieving effect (He & Hägg, 2011; Itta, Tseng, & 
Wey, 2011; Zhang, Wang, Zhang, Qiu, & Jian, 2006).  
 

The permeabilities of all gases except CO2 dropped significantly when the sample was 
pyrolyzed to 500 °C due to the pre-mature development of the porous structure. As suggested 
by the TGA analysis in sub-chapter 4.3.3, at this pyrolysis stage, the decomposition of gases 
and structural rearrangement to create a highly porous structure was not sufficient for the 
diffusion of most non-adsorbable gases. These decomposed gases were responsible for 
creating the microporous channels on their way out (Norharyati & Ismail, 2012; Wang et al., 
1996; Wei, Qin, Hu, You, & Chen, 2007). The amorphous structure originated from the 
thermostabilized PPOM gradually collapsed during the pyrolysis and chaotically rearranged 
as amorphous carbon (Lua & Su, 2006). 
 

(a) 

(b) 

(c) 

(d) 
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Figure 3. Permeabilities by carbon membrane prepared at different pyrolysis temperatures 
 
H2 Permeability and H2/N2 Ideal Selectivity of Carbon Membrane Against Pyrolysis 
Temperature 

The permeabilities of H2 and N2 and H2/N2 ideal selectivity against pyrolysis 
temperature are shown in Figure 4. After the PPO membrane was thermostabilized, and then 
pyrolyzed at 500 °C, significant reductions of H2 and N2 permeabilities and H2/N2 ideal 
selectivity were observed because of the pre-mature development of the porous structure. 
During the thermostabilization, the PPOM underwent oxidative crosslinking, which caused 
the formation of highly-packed polymer chains in the membrane structure (Rivaton, 1995). 
The decomposition of gases started to occur during the pyrolysis, which created the micro-
channels when the decomposing gases were released (Fu, Sanders, Kulkarni, & Koros, 2015). 
The decomposition coincided with thermal shrinkage, which was triggered by the increasing 
temperature on the membrane structure (Sazali et al., 2015). 
 

 
Figure 4. Permeabilities of H2 and N2 and H2/N2 ideal selectivity by PPO membrane and its 
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When the pyrolysis temperature was increased from 500 to 600 °C, the H2 and N2 
permeabilities increased significantly from 35.2 Barrer to 2401.9 Barrer and from 0.9 Barrer 
to 7.5 Barrer, respectively. The H2/N2 ideal selectivity was increased considerably as well given 
that the magnitude of increment of H2 permeability was relatively higher. This phenomenon 
was an indication of a well-developed pore structure with high porosity and ideal pore size 
for the separation. This phenomenon was believed to be due to dehydrogenation, in which a 
massive amount of hydrogen gas was released to establish a membrane structure with high 
porosity (Foley, 1995). The release also purged most of the entrapped and largely 
decomposed gases, such as carbon monoxide and carbon dioxide. The result also showed the 
absence of trade-off behavior between H2 permeability and H2/N2 ideal selectivity. A similar 
observation was shown by previous work (Campo et al., 2010). As the pyrolysis temperature 
was increased to 700 °C, the H2 and N2 permeabilities and H2/N2 ideal selectivity decreased 
significantly because of thermal shrinkage, which led to decreased pore size and porosity (W. 
N. W. Salleh, Ismail, Matsuura, & Abdullah, 2011). At this stage, the thermal shrinkage was 
more dominant than the gaseous decomposition factor. Based on Robeson’s 2008 upper 
bound in Figure 5a, CM600 was the optimum carbon membrane for further enhancement. 
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c) thermal soak time 

Figure 5. Performances of the PPO and carbon membranes against Robeson’s 2008 H2/N2 
upperbound at different pyrolysis conditions 
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Figure 6. Permeabilities of H2 and N2, and H2/N2 ideal selectivity of CM600 against pyrolysis 

heating rate 
 

H2 permeability and H2/N2 ideal selectivity of carbon membrane against thermal soaking 
time 
Figure 7 shows the H2/N2 permeability plot of sample 1 °C/min-CM600 against thermal 
soaking time. The H2 and N2 permeabilities indicated a consistent increase when thermal soak 
time was applied from 0 to 0.5 h. The H2 and N2 permeabilities increased from 2474 and 6.2 
to 2756 and 8.7 Barrer, respectively. The pore structure of the carbon membrane continued 
to develop as the decomposition continued. Besides that, some of the pores developed earlier 
were cleansed from entrapped decomposing gases.  

 
Figure 7. H2 and N2 permeabilities and H2/N2 ideal selectivities of 4 °C/min-CM600 against 
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However, a further increase of thermal soak time to 4 h caused the N2 permeability to 
decrease gradually, while the H2 permeability remained consistent gradually. This was a clear 
indication of the thermal sintering effect, which reduced the membrane pore size and 
densified the pore structure (Wan Norharyati Wan Salleh & Ismail, 2012). The effect was more 
dominant against the larger N2 than the H2 indicating the porosity remained high since the 
decomposition replaced some of the pores collapsed due to the sintering effect (W. N. W. 
Salleh et al., 2011). The increase of N2 permeability against the thermal soaking time of 0 to 
0.5 h decreased the H2/N2 ideal selectivity. On the other hand, the consistency of H2 
permeability and gradual decrease of N2 permeability against the thermal soaking time 
between 1 to 4 h resulted in a significant increase of H2/N2 ideal selectivity from 322 to 586. 
This result indicated that the membrane pores could be fine-tuned at a micro-scale by utilizing 
the thermal soak time to create a pore structure that obstructs large gases, with minimum 
impact on the smaller ones. As a result, the ideal selectivity of the H2/N2 was found to be at a 
maximum at the longer thermal soaking time. According to Robeson’s 2008 upper bound in 
Figure 5c, the best thermal soaking time for optimum H2/N2 separation performance was four 
hours. The carbon membrane samples became highly fragile and brittle after eight hours of 
thermal soaking, which shattered after exposure to gas pressure higher than 1 bar. As shown 
in Figure 8, some samples were tearing open because of extreme densification; the tear was 
as wide as 0.25 mm.  

 

 
Figure 8. Physical appearance of 1 °C/min-CM600 after 8 h of thermal soaking showing a 
tear stretching along the fiber 
 

Figure 9 shows the CM600s after enhancement. The results are plotted together with 
that from previous works against Robeson’s 2008 upper bound. The figures provide an 
overview of the current membranes in comparison with that in previous works for future 
improvement. Based on the single gas test, the performance of 1 °C/min-CM600-4 h hollow 
fiber carbon molecular sieve membrane was competitive. Besides, a balance between H2/N2 
ideal selectivity and H2 permeability was observed compared with the PFR-based tubular 
supported carbon membrane by (Llosa Tanco, Pacheco Tanaka, & Mendes, 2015). However, 
the 1 °C/min-CM600-4 h was located under Robeson’s 2008 upper bound for the mixture test 
because of extremely low H2/N2 permselectivity. 
 
Conclusion 

This paper presented the synthesis and enhancement of hollow fiber carbon 
membrane from PPO in terms of pyrolysis temperature, heating rate, and thermal soaking 
time based on the Robeson’s upper bound and H2/N2 commercial boundary. The surface 
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morphology of the 14-15-µm-thick carbon membrane was dense, homogeneous, and 
symmetrical. The structure of the carbon membrane was amorphous, and the transport 
mechanism of H2 through the carbon membrane was dominated by molecular sieving. High 
pyrolysis temperature reduced the H2 permeability and H2/N2 ideal selectivity. Increasing the 
heating rate increased the H2 and N2 permeabilities but decreased the H2/N2 ideal selectivity. 
Increasing the thermal soaking time slightly increased the H2 permeability and decreased the 
N2 permeability, which resulted in increased H2/N2 ideal selectivity. The well-balanced H2 
permeability and H2/N2 ideal selectivity from the single gas test was 2868.2 Barrer and 586, 
respectively. The study has shown that the carbon membrane performance enhancement 
through pyrolysis parameter adjustment, control, which can be well integrated to ensure the 
permeability and ideal selectivity obtained, is within the desired region.  
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Figure 9. Performance of optimized CM600 in the current work and carbon membranes 
from previous works against Robeson’s 2008 H2/N2 upper bound 
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