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Abstract 
Breath analysis offers a non-invasive, rapid, and cost-effective method for diagnosing 
respiratory diseases and monitoring various health conditions. However, non-invasive breath 
analysis techniques often suffer from lower sensitivity and specificity compared to invasive 
methods, primarily due to the lack of standardized protocols. While invasive methods provide 
greater accuracy, they are associated with increased discomfort and risk. This study focuses 
on enhancing the precision and reliability of non-invasive breath sensors by developing a 
breath sensor using the commercially available MH-Z14A CO2 sensor. Breath samples were 
collected from smokers and non-smokers using Tedlar bags and analysed to detect CO2 levels. 
The sensor’s output was processed through an ESP32, providing real-time CO2 concentration 
readings. Results revealed that smokers exhibited longer response and recovery times, 
attributed to elevated CO2 levels, while sensitivity analysis demonstrated the sensor's ability 
to detect minute variations in CO2 concentrations. These findings underscore the potential of 
this sensor for non-invasive respiratory monitoring and early detection of respiratory 
conditions. 
Keywords: Breath Analyser, Carbon Dioxide, IoT, MH-Z14A, Non-Invasive, Pulse-Width 
Modulation (PWM), Tedlar bag 
 
Introduction  
According to the World Health Organization (WHO), respiratory diseases contribute to more 
than four million premature deaths annually. By 2030, Chronic Obstructive Pulmonary 
Diseases (COPD) are projected to become the third leading cause of death worldwide based 
on WHO EMRO (2024) Chronic obstructive pulmonary disease (COPD). Available at: 
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https://www.emro.who.int/health-topics/chronic-obstructive-pulmonary-disease 
copd/index.html (Accessed: Jan. 10, 2024). Healthcare facilities need expensive technology 
and personnel to diagnose these illnesses, making preventive check-ups unlikely for everyone. 
Computed tomography, forced oscillation tests, and exhaled breath analysis are IoT 
integration methods for respiratory disease prediction (D. Hashoul & H. Haick, 2019). Recent 
advances in chemical-based sensor technologies have enabled cost-effective non-invasive 
embedded systems called e-noses (Saidi et al., 2019). IoT offer flexible and timely cloud 
computing transfer and processing of sensor and wearable device data, allowing providers of 
healthcare speedier access (Lutz & Coradi, 2022). Given the high costs of gas detectors, using 
commercial sensors to construct an exhaled human breath sensor might save money. 
Commercial breath analysis sensors are cost-effective and usable but may have sensitivity, 
selectivity, stability, and repeatability issues (Smith & Jones, 2021).  
 
In recent years, sensors and e-Noses have shown promise as powerful diagnostic tools for 
breath analysis, addressing clinical problems (Amal & Haick, 2020). Based on this problem, 
the development of affordable and non-invasive early predictiction solutions and developed 
improved respiratory diseases prediction analytics. There are several previous studies 
regarding breath analyser. Existing exhaled breath sensor technologies for focusing on 
changes in electrical resistance, sensor sensitivity, and selectivity (Ramanathan et al., 2023), 
measured the concentration of carbon dioxide in the exhaled air (Ramanathan et al.,Fuadi et 
al., 2023), (Hong et al., 2018), evaluate sensor response time (Fuadi et al., 2023) and 
importance of short response and recovery times for sensors used in breath analysis 
(Kaloumenou et al., 2022). This research provides new perspectives on gas analysis in exhaled 
breath. These studies help advance respiratory analysis research by detecting health issues 
and monitoring the environment. 
 
Based on the previously mentioned results, the main things needed to develop an exhaled 
human breath sensor is ensuring reproducibility, high sensisivity, and good resolution of the 
sensor, as well as achieving a low limit of detection and increased selectivity to detect volatile 
organic compounds (VOCs) in exhaled breath. Additionally, it is essential to maintain a stable 
baseline in the absence of gas-target biomarkers, enable full recovery of the sensor after gas 
removal, and ensure short response and recovery times. By implementing the internet of 
things in healthcare, it can enable the collection and analysis of data from smart devices and 
sensors, allowing for continuous monitoring of health metrics (Salama et al., 2023). Portable 
healthcare monitoring systems utilise IoT technology to monitor patients' physiological 
indicators in real-time and automatically maintain databases. Thus, the project will entail 
evaluating the sensor's parameters such as response time, recovery time and sensitivity of 
sensor and incorporating the human breath sensor into an Internet of Things (IoT) application. 
This project will primarily focus on analysing the data obtained from the commercial sensor 
that will be utilised in this project. 
 
Methodology 
System Architecture for Breath Sensing and Data Acquisition 
The block diagram illustrates in Figure 1 the architecture of a breath sensor system designed 
for real-time data acquisition and analysis. The primary components include the MH-Z14A 
CO₂ sensor, Tedlar Bag, ESP32 microcontroller, and the Blynk IoT platform. 
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Figure 1: Block diagram for development of exhaled human breath system 

 
Sensor Unit MH-Z14A is the collected breath is analysed using the MH-Z14A CO₂ gas sensor 
uses non-dispersive infrared (NDIR) technology, a commercially available sensor capable of 
detecting carbon dioxide concentrations. The sensor provides two types of output are 
analogue signal and pulse-width modulation (PWM) signal. The analogue signal is a 
continuous voltage that represents the measured CO₂ concentration and the PWM signal is a 
digital representation of the CO₂ concentration, expressed as a duty cycle. The physical display 
of the MH-Z14A gas sensor is shown in Figure 2. 

 
Figure 2: MH-Z14A non-dispersive infrared gas sensor 
 
Breath Sample Collection is exhaled breath samples collected in a Tedlar Bag. The tedlar bag 
is a specialized container designed to collect and preserve gas samples. The primary objective 
is to guarantee the preservation of the collected gases in an uncontaminated state to ensure 
precise measurements. The bag contains vital elements: the inlet valve for introducing gas 
samples acquired, for example, through human exhalation, and the outlet valve for regulated 
gas release or connection to an analytical device for analysis afterwards. This study employs 
a tedlar bag to collect exhaled air from individuals, allowing for differentiation between non-
smokers and smokers. The collected samples are then subjected to analysis. The concept of 
tedlar bag is shown in Figure 3. 

ESP32 

MH-Z14A 

Blynk App 

Tedlar Bag 

PWM 
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Figure 3: Tedlar bag 
 
Microcontroller ESP32 serves as the central processing unit for the system. It receives the 
sensor outputs in analogue and PWM, processes the data, and transmits it to external 
platforms. The ESP32 is programmed via USB using the Arduino IDE to execute the required 
signal processing and communication tasks. The physical component of the ESP32 as shown 
in Figure 4. 

 
Figure 4: ESP32 microcontroller 
 
Blynk Platform is the data visualization and cloud integration using the processed data 
transmitted to the Blynk Cloud via a wireless connection. Real-time visualization of sensor 
readings is achieved through the Blynk App, providing an intuitive interface for monitoring 
and analysis. The system's integration with the cloud enables remote access and further data 
processing. Blynk was used to create a custom user interface that displayed real-time output 
voltage and CO2 concentration graphs. Blynk's seamless integration and advanced data 
management improved the breath analysis system's operating efficiency and efficacy, 
demonstrating its IoT applicability. 
 
This architecture ensures accurate collection, processing, and visualization of breath data, 
enabling applications in real-time monitoring and diagnostic studies. The use of the MH-Z14A 
sensor and ESP32 microcontroller allows for a flexible and efficient design suitable for an IoT-
based exhaled human breath monitoring system.  
 
Development and Testing of an IoT-Enabled Breath Sensor Prototype 
A prototype of an IoT-enabled breath sensor was developed to evaluate its functionality in 
monitoring exhaled carbon dioxide. The system integrates an ESP32 microcontroller, the MH-
Z14A carbon dioxide sensor, and a modified food-grade container designed to store gas 
samples. A hose tube was implemented to regulate the flow of carbon dioxide from a custom 
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Tedlar bag into the gas-sealed container. Initial tests revealed design limitations, prompting 
iterative optimizations to enhance the efficiency and accuracy of gas collection. 
 
The prototype, depicted in Figure 5, facilitates remote respiratory monitoring by leveraging 
IoT connectivity. The integration of the ESP32 microcontroller and MH-Z14A sensor enables 
real-time data acquisition, forming the basis for potential applications in health diagnostics 
and personalized wellness monitoring. 

 
Figure 5: Prototype of the IoT-enabled breath sensor system 

 
The decision to construct the Tedlar bag independently was motivated by the need for a cost-
effective alternative to commercial options. A resealable storage bag (dimensions: 14 cm x 20 
cm) equipped with two valves was developed to enable controlled airflow. Despite initial 
challenges in achieving an airtight seal, iterative testing and design modifications improved 
its reliability. The final design, shown in Figure 6, enables accurate and consistent breath 
sample collection. Exhaled breath is directed into the bag via an inlet valve, and the collected 
sample is subsequently transferred to the gas-sealed container for analysis. The DIY Tedlar 
bag represents an innovative, practical, and economical solution for human breath sampling. 
 

 
Figure 6:  DIY Tedlar bag for breath sample collection 

 
To ensure accurate data collection, a systematic preheating process was employed to 
calibrate the sensor by removing residual carbon dioxide. This step optimizes the sensor’s 
performance and ensures precise measurements when analysing breath samples using the 
controlled setup. The prototype, connected to the Tedlar bag as depicted in Figure 7a, 
facilitates a seamless gas collection process, while the controlled gas flow mechanism 
illustrated in Figure 7b maintains sample integrity and ensures reliable data acquisition. These 
steps are critical for achieving consistent and reproducible results in breath composition 
analysis. 
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(a) (b) 

 
Figure 7: Data Analysis Techniques and Sampling Process: (a) Prototype connected with the 
Tedlar bag for gas collection. (b) Controlled gas flow mechanism during sampling. 
 
Data Analysis Process 
The data analysis process involved the systematic transmission of sensor data to the Blynk 
Cloud, ensuring the integrity of the dataset for subsequent analysis. Once stored in the cloud, 
the data was exported as a CSV file and imported into OriginPro software for detailed 
examination. OriginPro was selected for its advanced analytical tools, which facilitated the 
generation of precise graphical representations. 
 
To evaluate the temporal dynamics of breath composition, the response time and recovery 
time of the sensor were assessed. OriginPro’s built-in gadgets for response and recovery time 
analysis were applied to the output voltage graph, enabling a refined examination of these 
temporal features. The response time refers to the period required for the sensor to detect 
a change in carbon dioxide concentration, while the recovery time denotes the duration for 
the sensor to return to its baseline state. 
 
Each breath sample was analysed individually to quantify the response and recovery times, 
ensuring accuracy and reproducibility. On the output voltage graph, the yellow-shaded 
region represents the response time, while the blue-shaded region corresponds to the 
recovery time. These visual markers provided a clear and intuitive understanding of the 
sensor's performance under varying breath sample conditions. An illustration of the response 
and recovery time analysis is presented in Figure 8. 
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Figure 8: Analysis of response and recovery times based on the output voltage graph. 
 
Finding and Discussion 
Data Collection of Exhaled Smoker and Non-Smoker Samples 
The data collection process focused on obtaining exhaled breath samples from individuals 
classified as either smokers or non-smokers. Each participant was assigned a unique identifier 
to ensure accurate tagging and classification of the collected data. This distinction allowed for 
a comparative analysis of the differences in carbon dioxide levels and sensor response 
characteristics between the two groups. 
 
Breath samples were collected using a DIY Tedlar bag, which ensured precise and reliable 
sample capture. Participants exhaled directly into the bag through an inlet valve, and the 
collected samples were then transferred to the prototype system for analysis. The MH-Z14A 
carbon dioxide sensor interfaced with the ESP32 microcontroller measured the carbon 
dioxide concentration of each sample, and the resulting data was transmitted to the Blynk 
Cloud. 
 
The dataset included a total of 12 samples, comprising both smokers (n=5) and non-smokers 
(n=7). The CSV file exported from the Blynk Cloud was imported into OriginPro software for 
advanced visualization and analysis. Graphs of output voltage versus time were generated 
for each sample, enabling the identification of the sensor's response and recovery times. 
These temporal features are critical for understanding the dynamic behaviour of exhaled 
carbon dioxide across different participant groups. 
 
Table 1 outlines the classification of the samples, while Figure 9 provides a visual 
representation of the output voltage variations over time for all collected samples. The 
distinction between smokers and non-smokers is evident in the sensor's response and 
recovery patterns, highlighting the potential application of the system in health diagnostics 
and respiratory monitoring. 
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Table 1 
Classification of Breath Samples 

Sample Behaviour 

1 Non-smoker (NS1) 

2 Non-smoker (NS2) 

3 Non-smoker (NS3) 

4 Non-smoker (NS4) 

5 Smoker (S1) 
6 Smoker (S2) 
7 Smoker (S3) 
8 Smoker (S4) 
9 Smoker (S5) 

10 Non-smoker (NS5) 

11 Non-smoker (NS6) 

12 Non-smoker (NS7) 

 

 
Figure 9: Graph of output voltage versus time for all exhaled breath samples, illustrating 
response and recovery times for smokers and non-smokers. 
 
Response Time and Recovery Time 
Figure 10 illustrates the comparison of response and recovery times for each gas sample, 
providing insights into the sensor’s dynamic performance across smoker and non-smoker 
groups. 
 
The extended response times observed in smokers, as depicted in Figure 10(a), reflect a 
delayed reaction of the gas sensor to changes in carbon dioxide concentrations. This delay 
aligns with standard gas sensor behaviour, where stabilization requires additional time at 
higher gas levels. These findings emphasize the critical importance of rise time in gas sensors, 
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particularly in applications such as breath analysers, which depend on the rapid detection of 
concentration changes. 
 
The prolonged response time in smokers could be linked to gases associated with smoking-
related respiratory conditions, such as chronic obstructive pulmonary disease (COPD)  
(Laniado-Laborin, 2009). While these data do not establish a definitive diagnosis, the 
correlation between response times and potential respiratory issues enhances our 
understanding of the sensor's sensitivity to different breath compositions. This distinction 
between smoker and non-smoker breath samples highlights the utility of the prototype for 
identifying biomarkers related to respiratory health. 
 
As shown in Figure 10(b), the recovery times for non-smokers consistently remain below 100 
seconds, indicating a quicker return of the sensor to baseline conditions. Conversely, smokers 
exhibit a broader range of recovery times, with some samples demonstrating significantly 
prolonged durations. For example, Sample S1 displays an outlier with an exceptionally large 
recovery time, potentially indicative of data variability or an underlying abnormality. 
Additionally, variations in Sample S3 compared to other smoker samples suggest possible 
individual differences in exhaled gas composition. 
 
The recovery time of gas samples is a critical parameter for assessing respiratory health. 
Longer recovery times in smokers may reflect delayed sensor reset due to elevated carbon 
dioxide levels, a condition often linked to smoking-induced respiratory complications such as 
COPD (Azuma et al., 2018). These findings further validate the role of recovery time in 
identifying respiratory issues, particularly for individuals with prolonged exhalation 
characteristics. 
 
High carbon dioxide levels in exhaled breath are associated with various respiratory disorders, 
including COPD and irregular breathing patterns (Loeb et al., 2024). Prolonged recovery times 
may signify higher concentrations of exhaled carbon dioxide, emphasizing the importance of 
precise monitoring to detect early respiratory anomalies. Additionally, excessive carbon 
dioxide levels can lead to increased blood acidity, a condition with potentially severe 
consequences. Monitoring carbon dioxide in exhaled air can aid in early diagnosis, 
personalized health evaluations, and proactive respiratory health management. 
 
Finally, the ability to accurately measure response and recovery times provides valuable 
diagnostic information. For instance, high exhaled carbon dioxide concentrations and slow 
recovery times may indicate impaired respiratory function or delayed metabolic gas 
exchange. Since elevated carbon dioxide levels are known to increase respiratory rate, 
reduced sensor responsiveness or prolonged recovery may signal abnormal respiratory 
dynamics, necessitating further medical evaluation (Hernandez-Miranda & Birchmeier, 2015). 
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(a) (b) 
Figure 10: Bar graph of each gas sample: (a) Response time (Rise time) and (b) Recovery 
time (Fall time) 

 
Sensor Sensitivity  
To evaluate the sensor's performance, sensitivity testing was conducted to assess its ability 
to distinguish variations in gas concentrations. Sensitivity is a crucial parameter for 
determining the sensor’s dynamic range and efficacy across different breath samples. The 
sensitivity calculation is based on a predefined formula expressed in Equation (1): 
 

𝑆 =
𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛 (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒)

𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛 (𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒)
  (1) 

Where: 
• Vmax represents the peak output voltage during recovery. 
• Vmin (Recovery time) denotes the lowest output voltage during the recovery phase.  
• Vmin (Response time) signifies the lowest output voltage during the response phase. 

 
Figure 11: Visualizes the sensitivity comparison between non-smoker and smoker samples. 
 
Enhanced sensitivity allows gas sensors to detect even minute variations in gas 
concentrations, which is critical for applications such as breath analysis (Lo Dayekh et al., 
2022). Highly sensitive sensors can capture subtle fluctuations that less sensitive counterparts 
may overlook, ensuring more accurate and reliable measurements. In contrast, sensors with 
lower sensitivity may fail to detect minor changes, potentially leading to false readings or 
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missed insights (D. Y. Nadargi et al., 2023). This makes sensitivity a vital characteristic for 
ensuring accurate gas concentration monitoring. 
 
Real-Time Monitoring via Blynk App 
The Blynk App serves as an intuitive and real-time gas sampling platform, enabling 
comprehensive visualization and analysis of breath sample dynamics. The app utilizes 
analogue and PWM outputs from the sensor to compute carbon dioxide concentration, 
output voltage, and timestamps in real time, as shown in Figure 12. 
 
Through customizable widgets, the Blynk App provides immediate visual feedback on gas 
sample analysis. By graphically displaying key parameters, such as breath composition and 
gas trends, the app enhances the accessibility and interpretation of data. Real-time 
monitoring enables rapid detection of abnormalities and behavioural trends, significantly 
improving the diagnostic potential of the breath analysis process. This functionality 
underscores the role of IoT technology in facilitating continuous and non-invasive health 
monitoring. 
 

 
Figure 12: Blynk app widget interface 
 
Conclusion and Future Work 
This study successfully developed a non-invasive CO₂ breath sensor integrated with IoT 
technology, highlighting several key findings. The sensor demonstrated reliable performance 
in measuring response and recovery times and sensitivity across smoker and non-smoker 
samples. Prolonged response and recovery times observed in smoker samples indicated the 
sensor's potential to detect elevated CO₂ levels associated with smoking-related respiratory 
conditions. Integration with the Blynk IoT platform enabled real-time monitoring and analysis, 
enhancing its application in health diagnostics. 
 
These findings underscore the potential of the IoT-enabled breath sensor for early detection 
of respiratory anomalies and personalized health monitoring. Future work should focus on 
enhancing sensor selectivity for additional biomarkers, improving accuracy under variable 



INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES 
Vol. 1 5 , No. 01, 2025, E-ISSN: 2222-6990 © 2025 

743 

environmental conditions, and conducting extensive clinical validations to strengthen its 
diagnostic reliability. 
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