

Considerations on the Exceptionally Rainy Year 2014 in the South-west of Romania

Andreea Floriana Marinica, Dana Maria (Oprea) Constantin, Ion Marinica, Victor Viorel Vatamanu

To Link this Article: http://dx.doi.org/10.46886/JJREG/v1-i2/1447
DOI: 10.46886/IJAREG/v1-i2/1447

Received: 17 Jul 2014, Revised: 22 Sep 2014, Accepted: 19 Nov 2014

Published Online: 23 Dec 2014

In-Text Citation: (Marinica et al., 2014)
To Cite this Article: Marinica, A. F., Constantin, D. M. (Oprea), Marinica, I., \& Vatamanu, V. V. (2014). Considerations on the Exceptionally Rainy Year 2014 in the South-west of Romania. International Journal of Academic Research in Enviornment \& Geography, 1(2), 11-22.

Copyright: © 2014 The Author(s)
Published by Knowledge Words Publications (www.kwpublications.com)
This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen
at: http://creativecommons.org/licences/by/4.0/legalcode

Vol. 1, No. 2 (2014) Pg. 11-22

Full Terms \& Conditions of access and use can be found at https://kwpublications.com/pages/detail/publication-ethics

Considerations on the Exceptionally Rainy Year 2014 in the South-west of Romania

Andreea Floriana Marinica ${ }^{1}$, Dana Maria (Oprea) Constantin², Ion Marinica ${ }^{3}$, Victor Viorel Vatamanu ${ }^{4}$
${ }^{1}$ Klimacampus, Germany, ${ }^{2}$ University of Bucharest, Faculty of Geography, Romania, ${ }^{3,4}$ Regional Meteorological Center Craiova, Romania
Email: marinica.andreea@gmail.com, danamartines@yahoo.com, ionmarinica@yahoo.com, victor.vatamanu@gmail.com

Abstract

The article analyzes the exceptionally rainy year 2014 in the south-west of Romania, year in which many rainfall records exceeded, for the whole series of meteorological observations at the meteorological stations in Oltenia. The year was marked by 23 excessively rainy periods where there were floods because of the exceptional amounts of precipitations. There were 21 rainfall records, far exceeding the wettest year 2005. Compared to the year 2005, floods were not so catastrofal due to the wide distribution of these rainfall throughout the year. Like 2005, the year 2014 was globally classified as the hottest year, and in Romania, like in most Europe, it was a normal warm year, but exceptionally rainy.

Keywords: Rainfall Records, Mediteraneean Cyclones, Torrential Rains, Floods.

Introduction

Although globally, 2014 was considered the warmest year since the beginning of the systematic measurements, in Oltenia, this year was a normally thermal and exceptionally rainy year, being similar to the exceptionally rainy year 2005, but surpassing it on the rainfalls recorded. Globally, each of the first ten months of 2014 were recorded the warmest months of the Earth since the temperature measurements have started, in 1880 (NOAA), and October 2014 was the 38th consecutive month of October during which the global temperature was higher than the average temperature of the 20th century, reaching $14.74^{\circ} \mathrm{C}$. October 2014 was the third consecutive month of 2014 with a global temperature record and the fifth in the last six months to set this record. This extended rainy period began after an exceptionally hot and dry summer (summer 2013), in September 2013, and the agricultural year 2013-2014 was the wettest agricultural year in the southwest of Romania, after 1960. An exceptional variability of daily, monthly, seasonal and annual rainfalls has been marked during this period. The year 2014 was marked by many exceptionally rainy consecutive months, with many intervals of heavy and torrential rain. The rainy intervals were interrupted by two months of dryness: February, exceptionally dry and November - very dry. The analysis of the climatic conditions in the south-west of Romania, in autumn 2014 is a continuation of the extensive studies on the climate variability (Marinica, 2006; Marinica, 2013; Sandu, Elena, Marinica, Vatamanu, 2012; Octavia, Marinica, Andreea, 2014).

The analysis of these important climate variations, effects and the causes of them will follow.

Results and Discussion

The analysis of the annual rainfall quantities recorded in 2014 in the south-west of Romania (Table 1) shows that in 2014, there were 13 absolute rainfall records throughout the data stream after 1955, meaning from the last 57 years, far exceeding the annual rainfall values recorded until 2005, which was the wettest year, prior to 2014.

These records have been registered at the following meteorological stations:

- Drobeta Turnu Severin, the value of $1167.9 \mathrm{I} / \mathrm{m}^{2}$ is the absolute record for this station and the second value which exceeds $1000.0 \mathrm{l} / \mathrm{m}^{2}$, after the value of $1008.3 \mathrm{l} / \mathrm{m}^{2}$, registered in 1969 , exceeding with $159.6 \mathrm{I} / \mathrm{m} 2$ the old record rainfall, after 45 years.
- Calafat, the value of $979.8 \mathrm{I} / \mathrm{m}^{2}$ is the first absolute rainfall record and the first value of over $900.0 \mathrm{l} / \mathrm{m}^{2}$ from all the stream data at this meteorological station, exceeding with $170.4 \mathrm{I} / \mathrm{m}^{2}$ the old record rainfall of $809.4 \mathrm{I} / \mathrm{m}^{2}$, registered in 2005.

Table 1 - The monthly and annual rainfall values recorded in Oltenia ${ }^{1}$ in $2014\left(1 / \mathrm{m}^{2}\right)$

Meterological station	$\mathbf{H m}$	\mathbf{I}	II	III	IV	V	VI
Dr. Tr. Severin	77	70.4	26.8	75.3	123.2	176.4	93.8
Calafat	66	54.8	9.2	77.3	149.4	92.8	72.6
Bechet	65	52.2	4.4	81.7	124.6	112.6	$\mathbf{7 0 . 6}$
Bailesti	56	63.4	12.7	85.7	$\mathbf{9 9 . 9}$	$\mathbf{8 6 . 2}$	95.6
Caracal	112	63.5	5.5	80.1	117.0	112.4	98.2
Craiova	190	81.7	8.2	97.1	125.0	154.8	133.8
Slatina	165	80.8	8.1	79.9	152.8	132.0	74.4
Bâcles	309	50.5	17.9	73.0	128.5	154.6	167.7
Tg. Logresti	262	73.0	17.7	75.8	139.3	131.0	$\mathbf{1 8 7 . 2}$
Dragasani	280	64.0	9.9	62.3	151.4	$\mathbf{1 7 9 . 4}$	161.4
Apa Neagra	250	$\mathbf{1 0 1 . 5}$	$\mathbf{3 2 . 6}$	$\mathbf{1 0 7 . 8}$	$\mathbf{1 9 7 . 4}$	211.2	123.8
Tg. Jiu	210	86.6	29.8	78.1	133.0	99.4	87.4
Polovragi	546	74.8	32.0	76.9	137.4	161.6	90.4
Rm. Vâlcea	243	81.8	18.5	64.7	161.7	139.4	132.2

Voineasa $^{\mathbf{1}}$	587	3.9	6.0	28.7	122.9	148.2	90.1
Parâng	1585	22.4	17.1	49.0	123.6	174.4	169.8
Media Oltenia	-	64.1	16.0	74.6	136.7	141.7	115.6
Ob. Lotrului	1404	28.1	25.3	38.2	47.2	90.4	118.2
Halânga	76	74.1	30.5	57.3	114.9	166.6	109.1
Statia Meteorologica	VII	VIII	IX	X	XI	XII	Anual
Dr. Tr. Severin	117.6	27.4	230.6	61.8	45.1	119.5	1167.9^{*}
Calafat	157.9	32.0	127.4	45.2	50.6	110.6	979.8^{*}
Bechet	77.2	$\mathbf{1 2 . 6}$	124.6	47.4	35.8	96.8	$840 . \mathbf{5}^{*}$
Bailesti	141.6	41.4	206.1	38.4	37.8	125.6	1034.4^{*}
Caracal	58.5	23.6	$\mathbf{1 7 5 . 2}$	52.0	$\mathbf{2 0 . 4}$	130.9	937.3^{*}
Craiova	92.8	55.6	160.6	51.8	34.9	150.9	1147.2^{*}
Slatina	174.0	38.4	52.4	47.0	24.8	166.5	1031.1^{*}
Bâcles	177.6	92.2	172.8	25.4	27.5	21.7	1109.4^{*}
Tg. Logresti	216.2	39.6	57.4	59.8	26.4	116.6	1140.0^{*}
Dragasani	196.6	59.0	41.8	55.8	35.0	139.9	1156.5^{*}
Apa Neagra	167.6	84.6	109.6	$\mathbf{1 5 2 . 8}$	64.8	$\mathbf{2 1 8 . 0}$	$1571 . \mathbf{7}^{*}$
Tg. Jiu	173.4	43.2	60.6	107.4	31.1	149.1	1079.1
Polovragi	$\mathbf{2 9 0 . 4}$	16.8	51.6	107.2	26.0	106.3	1171.4
Rm. Vâlcea	230.0	87.2	$\mathbf{2 8 . 4}$	48.6	29.4	113.0	1134.9^{*}
Voineasa	261.1	$\mathbf{1 1 6 . 2}$	83.4	81.2	34.3	$\mathbf{6 . 5}$	982.5
Parâng	268.7	118.6	87.5	124.2	25.6	67.1	1248.0
Media Oltenia	$\mathbf{1 7 5 . 1}$	55.5	110.6	69.1	34.3	114.9	1108.2^{*}
Ob. Lotrului	$\mathbf{2 9 9 . 6}$	95.2	78.3	124.5	37.8	66.3	1049.1
Halânga	130.3	37.3	144.1	64.3	37.0	114.0	1079.5

Processed data by ANM - CMR Oltenia SMA Craiova

- Bechet, the value of $840.5 \mathrm{I} / \mathrm{m}^{2}$ is the absolute rainfall record for this meteorological station, exceeding with $22.9 \mathrm{I} / \mathrm{m}^{2}$ the previous record of $817.6 \mathrm{I} / \mathrm{m}^{2}$, registered in 1957. At Bechet, we mention that only three annual rainfall values exceeded $800.0 \mathrm{I} / \mathrm{m}^{2}$. These are: $817.6 \mathrm{l} / \mathrm{m}^{2}$ in 1957, $807.8 \mathrm{I} / \mathrm{m}^{2}$ in 2005 and $840.5 \mathrm{I} / \mathrm{m}^{2}$ in 2014 , the last value being recorded after 9 years compared to 2005, while the value in 2005 was recorded after 49 years, which shows an increase of frequency in exceptional rainfall values, valid for all the meteorological stations in Oltenia.
- Bailesti, the value of $1034.4 \mathrm{l} / \mathrm{m}^{2}$ is the absolute rainfall record, being the first value over $1000.0 \mathrm{I} / \mathrm{m}^{2}$ at this station, which exceeds with $184.4 \mathrm{I} / \mathrm{m}^{2}$ the previous record of $850.0 \mathrm{I} / \mathrm{m}^{2}$,

[^0]registered in 2005, the previous record before 2005 being of $740.3 \mathrm{I} / \mathrm{m}^{2}$, registered in the rainy year 1970, which confirms, for this station as well, the increase of the annual rainfalls and the frequency of the exceptional values.

- Caracal, the value of $937.3 \mathrm{I} / \mathrm{m}^{2}$ is the absolute rainfall record for this meteorological station, exceeding with $35.5 \mathrm{I} / \mathrm{m}^{2}$ the previous record of $901.8 \mathrm{I} / \mathrm{m}^{2}$, registered in 2005 , which was the wettest year prior to the year 2014. This value is the second value over $900.0 \mathrm{I} / \mathrm{m}^{2}$ from all the stream data and exceeds with $177.8 \mathrm{I} / \mathrm{m}^{2}$ the previous record of $739.5 \mathrm{I} / \mathrm{m}^{2}$ of the last century, prior to 2005, recorded in 1979, which confirms, for this station, the increase of the annual rainfalls and the frequency of exceptional rainfall values.
- Craiova, the value of $1147 \mathrm{I} / \mathrm{m}^{2}$ is the second of over $1000.0 \mathrm{I} / \mathrm{m}^{2}$ from all the stream data, exceeding with $64.9 \mathrm{I} / \mathrm{m}^{2}$ the previous record of $1082.3 \mathrm{I} / \mathrm{m}^{2}$ in 2005 and with $354.8 \mathrm{I} / \mathrm{m}^{2}$ higher than the record in the last century of $792.4 \mathrm{I} / \mathrm{m}^{2}$, registered in 1972 , which confirms, for this station, the increase of the annual rainfall and the frequency of annual exceptional values. It can also be noticed that at this station, until 2005 , no annual value reached $800.0 \mathrm{l} / \mathrm{m}^{2}$, which confirms the quite exceptional character of these two values in 2005 and 2014.
- Slatina, the value of $1031.1 \mathrm{I} / \mathrm{m}^{2}$ is the absolute rainfall record and the first value which exceeds $1000.0 \mathrm{l} / \mathrm{m}^{2}$, being higher with $32.0 \mathrm{I} / \mathrm{m}^{2}$ than the old rainfall record of $999.1 \mathrm{I} / \mathrm{m}^{2}$ recorded in 2005 and with $232.8 \mathrm{l} / \mathrm{m}^{2}$ higher than the record of the last century of $798.3 \mathrm{l} / \mathrm{m}^{2}$ registered 34 years ago, in 1980. These significant differences for this station confirms the increase of the annual rainfall values and the frequency of exceptional rainfall values.
- Bâcles, the value of $1109.4 \mathrm{I} / \mathrm{m}^{2}$ is the absolute rainfall record, the first that exceeds $1000.0 \mathrm{l} / \mathrm{m}^{2}$, higher with $200.4 \mathrm{l} / \mathrm{m}^{2}$ than the old rainfall record of $909.0 \mathrm{l} / \mathrm{m}^{2}$ registered in 2005 and with $287.7 \mathrm{I} / \mathrm{m}^{2}$ higher than the record in the last century of $821.7 \mathrm{I} / \mathrm{m}^{2}$ registered 46 years ago, in 1972. These particularly significant differences also confirm the increase of the annual rainfall values and the frequency of exceptional rainfall values, for this station.
- Tg. Logresti, the value of $1140.0 \mathrm{l} / \mathrm{m}^{2}$ is the absolute rainfall record, the first that exceeds $1000.0 \mathrm{l} / \mathrm{m}^{2}$, higher with $161.4 \mathrm{l} / \mathrm{m}^{2}$ than the old record rainfall of $978.6 \mathrm{I} / \mathrm{m}^{2}$ registered in 2005 and with $234.4 \mathrm{I} / \mathrm{m}^{2}$ higher than the record in the last century, of $905.6 \mathrm{I} / \mathrm{m}^{2}$ registered 46 years ago, in 1972. These particularly significant differences also confirms, for this station, the increase of the annual rainfall values and the frequency of exceptional rainfall values. It can be noticed that for this meteorological station, only these three values of $905.6 \mathrm{I} / \mathrm{m}^{2}, 978.6 \mathrm{I} / \mathrm{m}^{2}$ and 1140.0 $\mathrm{l} / \mathrm{m}^{2}$ exceeded $900.0 \mathrm{l} / \mathrm{m}^{2}$.
- Dragasani, the value of $1156.5 \mathrm{l} / \mathrm{m}^{2}$ is the absolute rainfall record, being the second value exceeding $1000.0 \mathrm{I} / \mathrm{m}^{2}$, higher with $122.0 \mathrm{I} / \mathrm{m}^{2}$ than the old rainfall record of $1034.5 \mathrm{I} / \mathrm{m}^{2}$ registered in 2005 and with $257.5 \mathrm{l} / \mathrm{m}^{2}$ higher than the previous record, in the last century, of $899.0 \mathrm{l} / \mathrm{m}^{2}$ registered 48 years ago, in 1966 . These particularly significant differences also confirm, for this station, the increase of the annual rainfall values and the frequency of exceptional rainfall values.
- Apa Neagra, the value of $1156.5 \mathrm{l} / \mathrm{m}^{2}$ is the absolute rainfall record, the first that exceeds $1500.0 \mathrm{I} / \mathrm{m}^{2}$ and higher with 132.5 than the old rainfall record of $1439.2 \mathrm{I} / \mathrm{m} 2$ registered in 1999, with $147.9 \mathrm{I} / \mathrm{m} 2$ higher than the previous record of $\mathrm{I} / \mathrm{m}^{2}$ the last century, of $1423.8 \mathrm{I} / \mathrm{m}^{2}$ registered 15 years ago, in 1999 and with $189.6 \mathrm{I} / \mathrm{m}^{2}$ than the old rainfall record of $1382.1 \mathrm{I} / \mathrm{m}^{2}$ registered 45 years ago, in 1969. These particularly significant differences also confirm, for this station, the increase of the annual rainfall values and the frequency of exceptional rainfall values.

The value of $1571.7 \mathrm{I} / \mathrm{m}^{2}$, registered at Apa Neagra, which belongs to the Pades commune in the Gorj county, is the absolute annual maximum for all the meteorological stations in Oltenia (Table 1).
${ }^{3}$ Until 2010, in Craiova, a single annual rainfall value was ≥ 800.0 I / m2: the annual amount of $834.31 / \mathrm{m} 2$ in 2010.

- Rm . Vâlcea, the value of $1134.9 \mathrm{I} / \mathrm{m}^{2}$ is the absolute rainfall record, the second that exceeds $1000.0 \mathrm{I} / \mathrm{m}^{2}$, higher with $49.6 \mathrm{I} / \mathrm{m}^{2}$ than the old rainfall record of $1085.3 \mathrm{I} / \mathrm{m}^{2}$ registered in 2005 and with $230.6 \mathrm{I} / \mathrm{m}^{2}$ higher than the record of the last century, of $904.3 \mathrm{I} / \mathrm{m}^{2}$ registered 48 years ago, in 1966. These particularly significant differences also confirm, for this station, the increase of the annual rainfall values and the frequency of exceptional rainfall values. For this station, one can notice that only these three values of $904.3 \mathrm{I} / \mathrm{m}^{2}, 1085.3 \mathrm{I} / \mathrm{m}^{2}$ and $1134.9 \mathrm{I} / \mathrm{m}^{2}$ exceeded $900.0 \mathrm{I} / \mathrm{m}^{2}$.

For the compact period of rainfall observations (1977-2014), the annual average of rainfall values calculated for the entire region of Oltenia ${ }^{4}$ were between $340.2 \mathrm{I} / \mathrm{m}^{2}$ in the excessively dry year 2000 and $1108.2 \mathrm{l} / \mathrm{m}^{2}$ in the excessively rainy year 2014 (Table 2).

Of all the series of meteorological observations, the first year when the overall average for the entire region has exceeded $1000.0 \mathrm{I} / \mathrm{m}^{2}$ was the excessively rainy year 2005 with an average of $1016.4 \mathrm{l} / \mathrm{m}^{2}$, and the second year was 2014 , with an average of $1108.2 \mathrm{I} / \mathrm{m}^{2}$, exceeding, after nine years, the value in 2005 , of $91.8 \mathrm{l} / \mathrm{m}^{2}$, which is a significant increase for this parameter. In the last century, the average maximum rainfall record for the general average, for the whole region is $830.0 \mathrm{I} / \mathrm{m}^{2}$, registered in the rainy year 1979 and its first spectacular exceeding of 186.9 $1 / \mathrm{m}^{2}$, higher with 22.51% was registered after 26 years, in 2005. A second spectacular exceeding of $378.2 \mathrm{I} / \mathrm{m}^{2}$, meaning almost half percentage -45.56% was registered after only 9 years.

Table 2 - The annual average rainfall values calculated for the entire region of Oltenia, during a compact period of measurements ${ }^{2}$ 1977-2014

Year	1977	1978	1979	$\mathbf{1 9 8 0}$	$\mathbf{1 9 8 1}$	$\mathbf{1 9 8 2}$	1983	1984	1985	$\mathbf{1 9 8 6}$
Average	605.7	665.6	$\mathbf{8 3 0 . 0}$	815.9	754.0	639.1	479.5	697.7	558.5	566.8
Year	1987	1988	1989	1990	1991	1992	1993	1994	1995	$\mathbf{1 9 9 6}$
Average	629.3	592.3	550.1	522.4	736.5	428.4	506.4	545.2	689.3	628.6
Year	1997	1998	1999	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$
Average	636.8	717.0	778.9	$\mathbf{3 4 0 . 2}$	629.7	718.7	684.2	753.6	$\mathbf{1 0 1 6 . 4}$	729.2
Year	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$		
Average	836.9	625.7	759.0	833	461.2	580.9	734.8	$\mathbf{1 1 0 8 . 2}$		

Processed data by ANM - CMR Oltenia SMA Craiova
A modest overrun, with only $6.9 \mathrm{I} / \mathrm{m} 2$ was registered in 2007, in spring and the first two months of dry summer, because of the heavy rains from August to November.

These particularly significant differences confirm, for the entire region, the increase of the annual rainfall values and the frequency of exceptional values. The multiannual average
rainfall value, for the entire region, calculated for the compact observation period at all the meteorological stations, since the last century, is $621.4 \mathrm{l} / \mathrm{m}^{2}$, and for the entire period until 2014 is $668.0 \mathrm{l} / \mathrm{m}^{2}$, indicating a significant increase with $46.6 \mathrm{l} / \mathrm{m}^{2}$. The annual average rainfall values, calculated for the entire region, for the period 2001 - 2014 is $748.0 \mathrm{I} / \mathrm{m}^{2}$, which shows a dramatic increase with $127.6 \mathrm{l} / \mathrm{m}^{2}$, compared to the last century.

The general average variation graph for the entire region, from this common compact period at all the meteorological stations shows a strong upward trend of the growth coefficient of 3.6468 (Figure 1).

In 2014, there were registered 14 annual rainfall values over $1000.0 \mathrm{I} / \mathrm{m}^{2}$, meaning 4 values more than in 2005. The year 2005 was the first year when a meteorological station in the Oltenia Plain - Craiova, exceeded $1000.0 \mathrm{I} / \mathrm{m}^{2}$, exceeding the absolute maximum of the last century, of $792.4 \mathrm{l} / \mathrm{m}^{2}$ recorded in 1972 , higher with $289.9 \mathrm{l} / \mathrm{m}^{2}$, meaning 36.58%, while in 2014 , this record exceeded $354.8 \mathrm{I} / \mathrm{m}^{2}$, higher with 44.77%.

In 2014, three meteorological stations in the plain area recorded annual values of over $1000.0 \mathrm{l} / \mathrm{m}^{2}$: Dr. Tr. Severin, Bailesti and Craiova and two stations in the Getic Piedmont: Slatina and Bâcles.
${ }^{4}$ The absolute annual maximum rainfall in Oltenia (both for the meteorological stations and rainfall record stations) is of $1733.9 \mathrm{I} / \mathrm{m} 2$, registered in 1912 in the Valcea county, at Pesceana Cueni rainfall record station, on the river with the same name (Marinica I., 2006 pp. 6 si 357). ${ }^{5}$ The Slatina meteorological station has compact observations since 1977, thus the whole period of compact observations for the whole region is 1977-2014. In Slatina, the meteorological station has operated since 1893, but with interruptions, and old data rows are interrupted. Officially, 1977 is considered the year of establishment for the Slatina meteorological station.

Figure 1. The annual average rainfall variation, calculated for the entire region of Oltenia, during the period 1977-2014
Processed data ANM - CMR Oltenia SMA Craiova

The analysis of monthly rainfall values and the results of applying the Hellmann criterion (Bogdan Octavia, Niculescu El., 1999; Marinica I., 2006) show that:

- in January 2014, the monthly rainfall amounts ranged from $50.5 \mathrm{I} / \mathrm{m}^{2}$ at Bâcles, in the Mehedinti Hills to $101 \mathrm{I} / \mathrm{m}^{2}$ at Apa Neagra, in the Sub-Carpathian Basin, while the deviations from the annual average, calculated for the period 1901-1990 were between 29.2 \% at Calafat to 130.4 \% at Ramnicu Valcea, designating an excessively rainy month in most of the region. The monthly average for the entire region was $64.1 \mathrm{I} / \mathrm{m}^{2}$, and its percentage deviation from normal was 46.0%, which means a very rainy month, on average for the entire region. January was marked by two very rainy periods: January 19 - 21, January $24-26$, and the latter were heavy rainfalls. The maximum amount of rainfall recorded in 24 hours was $46.8 \mathrm{l} / \mathrm{m}^{2}$ at Babeni and Berislavesti, in the Vâlcea County, on January 25, which was the wettest day in January, with the average for the region of 18.9 I / m2.
- February 2014 was excessively dry, being interruped by a rainy period, with a general average of $16.0 \mathrm{I} / \mathrm{m}^{2}$.
- in March 2014, the monthly rainfall amounts ranged from $62.4 \mathrm{l} / \mathrm{m}^{2}$ at Dragasani to 97.1 $1 / \mathrm{m}^{2}$ at Craiova, and the deviations of the annual average percentage ranged from 32.9% at Caracal, in the Romanati Plain to 124.4 \% at Bâcles, designating an excessively rainy month in most of Oltenia. The monthly average rainfall for the region was $73.6 \mathrm{I} / \mathrm{m}^{2}$, and the percentage deviation from the annual average of 75.5 \% confirmed that March was excessively rainy, in average for the whole region. In March, there was a single five - day excessively rainy interval, March $2-6$. The maximum amount of rainfall in 24 hours was $41.4 \mathrm{I} / \mathrm{m}^{2}$ at Gabru, in the Dolj County, recorded on March 6, which was the wettest day in March, with an average of $19.1 \mathrm{I} / \mathrm{m}^{2}$ for the entire region. During this month, there were recorded the first floods of 2014, in some areas of Oltenia.
- in April 2014, the monthly rainfall amounts ranged from $99.5 \mathrm{I} / \mathrm{m}^{2}$ at Bailesti in the Oltenia Plain to $197.4 \mathrm{I} / \mathrm{m}^{2}$ at Apa Neagra, while the deviations from the annual average percentage ranged from 50.5 \% at Bailesti to 111.3 \% at Dragasani, in the Olt Valley, designating an excessively rainy month throughout Oltenia. The monthly average rainfall for the whole region was $135.8 \mathrm{l} / \mathrm{m}^{2}$, and its percentage deviation from the annual average was 135.8%, confirming that April was an excessively rainy month, in average for the region. In April, there have been recorded two excessively rainy periods: April $15-19$ and Aprilie $23-24$, summing up 7 days, while the maximum rainfall amount in 24 hours was $56.2 \mathrm{I} / \mathrm{m}^{2}$ at Filiasi, in the Dolj county, on April 16, being the wettest day in April 2014, with an average for the whole region of $28.8 \mathrm{I} / \mathrm{m}^{2}$. During this month, there have been registered floods in some areas of Oltenia, including Craiova. The amount of $197.4 \mathrm{I} / \mathrm{m}^{2}$ registered at Apa Neagra is the rainfall record for this meteorological station, being the largest in the last 59 years (during the periodl 1956-2014).
- in May 2014, the monthly rainfall amounts ranged from $86.2 \mathrm{I} / \mathrm{m}^{2}$ at Bailesti in the Oltenia Plain to $211.2 \mathrm{I} / \mathrm{m}^{2}$ at Apa Neagra, and the deviations from the annual average percentage ranged from 16.5 \% at Tg. Jiu to 157.4 \% at Dragasani, in the Olt Valley, designating an excessively rainy month in most part of Oltenia. The monthly average rainfall for the whole region was 141.7 $1 / \mathrm{m}^{2}$, and its percentage deviation from the annual average of 77.9% confirmed that May was excessively rainy, being over the average for this region. In May, there were registered three excessively rainy periods: May $2-5$, May $12-15$ and May $29-30$, summing up 10 days, while the maximum amount of rainfall in 24 hours was $86.0 \mathrm{I} / \mathrm{m}^{2}$ at Spineni in the Olt County. On 14th of May, it was the wettest day in May 2014, with a value of $53.7 \mathrm{I} / \mathrm{m}^{2}$ over the average of the region. During this month, there were recorded floods on large areas of Oltenia, including

Craiova. The amount of $211.2 \mathrm{l} / \mathrm{m}^{2}$ registered at Apa Neagra, is the fifth value over $200.0 \mathrm{l} / \mathrm{m}^{2}$, in descending order, registered at this meteorological station, the largest after 1987, for the last 28 years, between 1987-2014.

- in June 2014, the monthly rainfall amounts ranged from $72.6 \mathrm{I} / \mathrm{m}^{2}$ at Calafat, in the Oltenia Plain to $187.2 \mathrm{l} / \mathrm{m}^{2}$ at Tg . Logresti in the Hills of Oltenia, while deviations from the annual average percentage ranged from 19.5 \% at Polovragi to 158.9 \% at Tg. Logresti, designating a very rainy and excessively rainy month in most parts of Oltenia. The monthly average rainfall for the whole region was $115.6 \mathrm{I} / \mathrm{m}^{2}$, and its percentage deviation from the annual average was 37.0%, confirming that June was very rainy, on average, for the region. In June, there were registered four excessively rainy periods June $2-4$, June $15-20$, June $24-26$ and June 30, summing up 13 days, while the maximum amount of rainfall in 24 hours was $65.0 \mathrm{I} / \mathrm{m}^{2}$ at Craiova, in the Dolj County, on June 18, being the wettest day in June 2014, with an average of $18.61 / \mathrm{m}^{2}$ for the whole region. During this month, there were recorded floods on the large areas of Oltenia, including Craiova. The amount of $187.2 \mathrm{I} / \mathrm{m}^{2}$ registered at Tg . Logresti is the second value, in descending order, registered at this meteorological station, being the largest after 1975, for the past 40 years in the period 1975-2014.
- in July 2014, the monthly rainfall amounts ranged from $58.5 \mathrm{I} / \mathrm{m}^{2}$ at Caracal in the Romanati Plain to $290.4 \mathrm{I} / \mathrm{m}^{2}$ at Polovragi, in the SubCarpathian Basin, while the annual average percentage deviations were between 8.7% at Caracal and 336.8% at Tg. Logresti, designating an excessively rainy month in most of Oltenia, except for a small area, at Caracal, where rainfalls were normal. The monthly average rainfall for the whole region was $175.1 \mathrm{l} / \mathrm{m}^{2}$, while the percentage deviation from the annual average was 169.5%, confirming that July was exceptionally rainy, in average for the whole region. In July, there were recorded five excessively rainy periods July 3, July $8-11$, July $14-19$, July $21-23$, July $25-31$, summing up 21 days, while the maximum amount of rainfalls in 24 hours was 112.6 was $1 / \mathrm{m}^{2}$ at Sadu, in the Gorj county, on July 27, the rainiest day of July 2014, with the average for the region of $36.1 \mathrm{I} / \mathrm{m}^{2}$. During this month, there were registered floods in large areas of Oltenia, particularly intense on 27th, 28th, including Craiova. The amount of $290.4 \mathrm{l} / \mathrm{m}^{2}$ registered at Polovragi is the second value, in descending order, registered at this meteorological station, the largest after 1991, for the last 24 years, in the period 1991 - 2014. July was the wettest month of 2014.
- August was the hottest month of the year 2014 and with normal rainfall values, in average for the whole region, with the general average of $55.5 \mathrm{I} / \mathrm{m}^{2}$.
- in September 2014, the monthly rainfall amounts ranged from $28.4 \mathrm{I} / \mathrm{m}^{2}$ at Râmnicu Vâlcea in the Olt Valley to $230.6 \mathrm{I} / \mathrm{m}^{2}$ at Dr. Tr. Severin, while the deviations from the annual average percentage ranged from - 46.6 \% at Râmnicu Vâlcea to 497.4 \% at Bailesti, designating a month with rainfall characteristics from very dry to the restricted area of Râmnicu Vâlcea to excessively rainy in most parts of Oltenia. The monthly average rainfall values for the whole region were $110.6 \mathrm{l} / \mathrm{m}^{2}$, and its percentage deviation from the annual average was 134.0%, confirming that September was exceptionally rainy, in average for the region. In September, there were recorded three excessively rainy periods September 3-6, September $14-16$, September $22-23$, summing up nine days, while the maximum amount of rainfall in 24 hours was 102 I/m² at Dr. Tr. Severin, in the Mehedinti county, on September 14, being one of the wettest days of September 2014 with an average for the whole region of $16.1 \mathrm{I} / \mathrm{m}^{2}$. During this month, there have been severe flooding on large areas of Oltenia, both in the western and
eastern parts, particularly intense on September 5 and 14, including Caracal, on September 5 and then in the western part, in the area Orsova and Dr. Tr. Severin, on September 14. The amount of $230.6 \mathrm{I} / \mathrm{m}^{2}$ recorded at Dr. Tr. Severin, is an absolute rainfall record for this meteorological station, being the largest in September, within all stream values, exceeding with $91.1 \mathrm{I} / \mathrm{m}^{2}$, higher with 65.3 \% than the old record rainfall in 1972 of $139.5 \mathrm{l} / \mathrm{m}^{2}$, for the period 1956 - 2014.

At Dr. Tr. Severin, the value of $230.6 \mathrm{I} / \mathrm{m}^{2}$ in September 2014 is an absolute climate record for this station, being the highest monthly value of the last 53 years and the first value greater than $200 \mathrm{l} / \mathrm{m}^{2}$, while the amount of $102.0 \mathrm{l} / \mathrm{m}^{2}$ recorded in 24 hours, on September 14, 2014, is the second maximum amount of rainfalls in 24 hours after the $171.7 \mathrm{I} / \mathrm{m}^{2}$ registered on July 30 , 1969. The value of $175.2 \mathrm{I} / \mathrm{m}^{2}$ is a climatic record for September at the Caracal meteorological station, being 1.5 times higher than the previous record of $114.2 \mathrm{I} / \mathrm{m}^{2}$ in September 2005. Other climate rainfall records in this month were: $124.6 \mathrm{I} / \mathrm{m}^{2}$ at Bechet, $206.1 \mathrm{I} / \mathrm{m}^{2}$ at Bailesti (the first value over $200 \mathrm{I} / \mathrm{m}^{2}$ in September at this station), $175.2 \mathrm{I} / \mathrm{m}^{2}$ at Caracal, $160.6 \mathrm{I} / \mathrm{m}^{2}$ at Craiova and $172.8 \mathrm{I} / \mathrm{m}^{2}$ at Bâcles. These records have far exceeded the old monthly rainfall records registered at these stations during the last century. The value of $127.4 \mathrm{l} / \mathrm{m}^{2}$ at Calafat is the second value in September from all stream data of this station, after that of of $147.1 \mathrm{I} / \mathrm{m}^{2}$ on September 1, 1996.

- in October 2014, the monthly rainfall amounts ranged from $25.4 \mathrm{l} / \mathrm{m}^{2}$ at Bâcles, in the Hills of Mehedinti to $152.8 \mathrm{I} / \mathrm{m}^{2}$ at Apa Neagra, while the deviations from the annual average percentage ranged from - 55.5 \% at Bâcles to 129.1 \% at Apa Neagra, designating a month with rainfall characteristics from excessively dry in an restricted area at Bâcles to excessively rainy in the Subcarpathian area and the mountains. The monthly average rainfall value for the entire region was $69.1 \mathrm{I} / \mathrm{m}^{2}$, and its percentage deviation, compared to the annual average was 28.2%, thus considering October the rainy month, on average for the whole region. In October, there was only one excessively rainy interval, October $22-24$, summing up 3 days, while the maximum amount of rainfall in 24 hours was $116.4 \mathrm{I} / \mathrm{m}^{2}$ at Sadu, in the Gorj county, on October 23, which was the wettest day in October 2014, with the average for the region of $26.3 \mathrm{I} / \mathrm{m}^{2}$. This month, there were floods in large areas of the Oltenia Subcarpathians, on October 23.
- November 2014 was very dry, interrupting again, the rainy period, with an average of $34.3 \mathrm{l} / \mathrm{m}^{2}$.
- in December 2014, the monthly rainfall amounts ranged from $96.8 \mathrm{l} / \mathrm{m}^{2}$ at Bechet, in the extreme south of the region to $218.0 \mathrm{I} / \mathrm{m}^{2}$ at Apa Neagra, while the percentage deviations from the annual average were between 89.5 \% at Polovragi to 289.0 \% Polovragi at Slatina, designating an excessively rainy month in most of Oltenia, excepting the mountain area where it was rainy. The monthly average rainfall value for the whole region was $129.3 \mathrm{l} / \mathrm{m}^{2}$, and its percentage deviation from the annual average was 163.1%, confirming that December was exceptionally rainy, in average for the whole region. In December, there were three excessively rainy periods: December 1-2, December 6-10, December 26-28, summing up 10 days, while the maximum amount of rainfall in 24 hours was $69.8 \mathrm{I} / \mathrm{m}^{2}$ at Sadu, in the Gorj county, on December 9, being one of the wettest days of December 2014 with the average for the whole region of $27.4 \mathrm{l} / \mathrm{m}^{2}$. During this month, there were registered floods on large areas of Oltenia, on December 6 and 9. The amount of $218.0 \mathrm{I} / \mathrm{m}^{2}$ registered at Apa Neagra, is the third value in descending order, for this meteorological station, being the largest in December from all the stream values recorded after 1990.

As a result, in 2014, in the south-west of Romania, there were registered 23 excessively rainy intervals, which summed up 84 excessively rainy days, representing 23.0% of the year, in which the rains also had a torrential character. The rainy period had a space-time expansion of 70.7 \%, the normal one of 6.4 \% and the dry one of 22.9 \%. The highest rainfall amount in 24 hours was 116.4 was $\mathrm{I} / \mathrm{m}^{2}$ at Sadu, in the Gorj county, on October 23. The rainy day in 2014 was registered on July 27 , with an average for the whole region of $36.1 \mathrm{I} / \mathrm{m}^{2}$. There were 21 rainfall records throughout the year and 23 intervals with floods on different areas of Oltenia. Thus, the year 2014 is appreciated 'the year of rainfall records'.

At continental level, large-scale floods were recorded in different months in the Western Balkans, France, Italy etc. and the so-called Mediterranean Cyclones that hit some areas of the continent were rated as having 'the force comparable to the tropical Cyclones', because of the devastating effects of the floods and wind intensification associated with them.

The graphs of the monthly rainfall variation, for the entire period of observations have a strong linear ascending trend at all the meteorological stations in Oltenia, confirming the increase in precipitation.

The synoptic causes of heavy and torrential rains in 2014

The rains were produced by very strong Mediterranean Cyclones, whose frontal systems were very well developed and affected large areas of Europe. The high frequency of the Mediterranean Cyclones, during this year, was correlated with the negative phase of the North Atlantic oscillation. During this year, some of the strongest floods were caused by Mediterranean Cyclones (with an evolution most of their time at intermediate levels of altitude, with no correspondence to the earth surface), thus producing some problems in the forecasting activities for the people with limited work experience. However, the forecasts were very well done, firstly due to the experience of the staff in the field. There will be further analyzed examples of synoptic causes for the heavy rains during the intervals September 3-5, 2014, September 14-16, 2014.

The synoptic causes of the heavy rains during the interval of September $3-5$, were produced by a powerful Mediterranean Cyclone with intermediate levels of development in the atmosphere, with no correspondent at ground level, for most of the period, as shown in Figure 2. Its trend was trans-Balkanic and within September 5, at 6 o'clock UTC and September 5, at 12 o'clock UTC, it had a poor correspondent at the Earth's surface. This type of cyclone formed at the southern periphery of the Central European AntiCyclone with a Scandinavian dorsal is particularly strong, usually having a triple supply of hot and humid air from above the Mediterranean Sea (mT), with some cool and humid air from above the Black Sea (MP) and cool air, even cold ($\mathrm{mP}+\mathrm{cP}$) from above the North Sea, with an advection at the periphery of the antiCyclone.

Figure 2. The synoptical situation on the ground and altitude at 500 hPa level, superimposed over the TA 500/1000 relative topography, on September 4, 2014, at 18 o'clock UTC

Source: www.wetter3.de

This rich humid air supply causes an intense precipitation of the cloud systems and their interaction with the relief forms increases precipitations in certain areas ${ }^{6}$.

The heavy rainfalls during September $14-15,2014$ produced floods in the west part of the region and in the Caras-Severin County. On the night of September 14 to September 15, 2014, there were torrential rainfalls. Between September 14, at 7 o'clock UTC - September 15, at 7 o'clock UTC, the maximum value in 24 hours was $102.0 \mathrm{I} / \mathrm{m}$ at Dr . Tr. Severin, of $50.1 \mathrm{I} / \mathrm{m}$ at Halânga and $24.1 \mathrm{I} / \mathrm{m}$ at Bâcles. The area most affected was the one between Dr. Tr. Severin and Orsova. The road was flooded and damaged by water leaks with mud, rocks and liquid soil (called in the regional language 'lavina' soil - word of German origin and used in Serbia, Germany, Austria etc. and actually designating a leak under form of an avalanche). The road was blocked by the cars caught in the avalanche and they were damaged or buried by mud and rocks. There has been a victim as a result of asphyxiation, the car being buried by the 'lavina'. Two other people, in the same car, have been resuscitated and saved.

In Dr. Tr. Severin area, the rain started on September 14, at 13 o'clock UTC and lasted, with some flashes, until September 15, at 20 o'clock UTC, showing that the duration of the rain was of 30 hours, during which the rainfalls summed up $170.4 \mathrm{I} / \mathrm{m} 2$, which means an average intensity of $5.7 \mathrm{I} / \mathrm{m} 2$ / hour, and which, according to the Hellman criterion for torrential rainfalls, indicates an excessively torrential rain.
${ }^{6}$ This type of Mediterranean Cyclone formed at this junction, produces short time and heavy torrential rainfall on most parts of Europe, that is why the Romanian researchers (in the last century) have called it 'the European summer monsoon'. In the warm years, in the northern hemisphere, this Cyclone is also formed during autumn.

The synoptic situation from September 15, 2014 at 18 o'clock UTC is: at ground level, on September 14, 2014 at 18 o'clock UTC, the position of the barometric centers of atmospheric action above Europe was as it follows: the Azore AntiCyclone was positioned in the North Atlantic
having a value above 1025 hPa at the center, as shown in Figure 3. This was united by a high atmospheric pressure waist with the Scandinavian AntiCyclone, positioned over the Scandinavian Peninsula, having values above 1030 hPa at the center. On the Atlantic Ocean, a Cyclone of Icelandic origin was positioned at west of the Iberian Peninsula, being located in the elevated thalweg of the Icelandic Depression, with values below 995 hPa at the center.

Figure 3. The synoptic situation on the ground and altitude at 500 hPa level, superimposed over the TA 500/1000 relative topography, on September 14, 2014, at 18 o'clock UTC Source: www.wetter3.de

The Icelandic Cyclone was located at the west of Iceland, on the southwest coasts of Greenland. Another Cyclone of Icelandic origin was located at the east of Svalbard Archipelago, with a value below 990 hPa at the center. In the Minor Asia Peninsula, the Arabic Cyclone was present, partially stationary in the warm season of the year, with values under 1010 hPa in the center. Above the Mediterranean Sea, an extreamly low preassure field, almost uniform, was present, having values around 1015 hPa .

In the lower troposphere, below 500 hPa , the air circulation for Oltenia was of northeastern type, this air mass being advected at the periphery of the Scandinavian AntiCyclone, bringing an air riched in water vapor from above the North Sea and Black Sea.

At the level of 500 hPa , in the upper troposphere, the Western and Northeastern Europe was located in a low geopotential field, the value for the rainfall curves, characteristic for this date, being of 576 damgp. The South-East and North Europe were situated in the high geopotential dorsal. The shape of the rainfall curve of 576 damgp, similar to the letter ' Ω ' shows that there was a traffic jam in altitudine.

At this level, three low geopotential cores can be noticed: one located on the southeastern coasts of Greenland, over the Icelandic Cyclone and corresponding to its values of under 528 damgp center, a second one located above the Svalbard Archipelago with values below 520 damgp in the center and a third one, of interest to us, located above Serbia and Montenegro, on the Adriatic coast, with values below 568 damgp.

This third geopotential core explains the presence of an atmospheric disturbance of Mediterranean cyclonic type, with an evolution at the levels of altitude in the atmosphere, without any correspondence at ground level. It is actually the same type of Mediterranean Cyclone like the one that hit Oltenia between September 4-5, 2014.

For Oltenia, the air circulation, at 500 hPa level, was of south-west origin, feeding in altitudine, the south-western Mediterranean Cyclone with hot and humid air, riched in water vapor from above the Mediterranean Sea, but also from above the Atlantic Ocean.

As a result, this Mediterranean Cyclone, with an evolution at altitude levels, actually has a strong quadruple supply of water vapor which supported it.

The cloud systems have been highly developed and produced heavy rainfall in large parts of the continent (Figure 3). The torrential rains were continuous, with a duration of 24-36 hours in certain areas of the Caras-Severin and Mehedinti counties. The situation has evolved slowly over the three days of September 14, 15, 16.

Conclusions

The year 2014 was an exceptionally rainy year, when heavy rains were only interrupted in two months, February and November. At regional level, in the south-west of Romania, the year was marked by the development of 23 powerful Mediterranean Cyclones that caused heavy and torrential rains on extensive areas of Romania and Europe and, as a result, there have been registered 21 rainfall records.

It is the first year when the monthly rainfall values exceeded $1000.0 \mathrm{I} / \mathrm{m} 2$ on large areas of the Oltenia Plain, thus holding the annual absolute record.

In this article, there have been highlighted the increase of frequency in rainy intervals and of the exceptional rainfall quantities across the whole region, being underlined the increase of climatic variability.

The year 2014 was considered, in early December 2014, the warmest year since the beginning of the measurements, when each of the first nine months were recorded the warmest months of the onset temperature measurements (NOAA).

However, in Oltenia and even throughout Romania, 2014 was a year of normal heat, but excessively rainy, the annual rainfall value exceeding the values recorded in the wettest year 2005.

Like 2014, 2005 was a normal thermal year in Oltenia and Romania, but excessively rainy.
The rainfall amounts recorded in 2014 have exceeded, by far, those recorded in 2005, marking a new 'threshold' of rainfall regime in this part of the country.

However, the floods were not as catastrophic as those in 2005 due to the more uniform distribution of these rains throughout the year.

The main global cause of these heavy and torrential rainfalls is closely linked to global climatic warming because of which the warmer atmosphere contains a greater amount of water vapors and therefore, there are more intense precipitation processes and the cyclone intensity is higher. All these processes are very energetic (taking into account the thermodynamics of water vapor) and produce significant changes in the temperature field with effects on the modification of air currents in the atmosphere. An important consequence is the increasing of the air circulation and water cycle in nature, with all the effects of these processes.

References

Octavia, B., Niculescu, El. (1999), Riscurile climatice din România, Academia Româna, Institutul de Geografie, Bucuresti
Octavia, B., Marinica, I., Andreea, M. F. (2014), Caracteristici climatice ale iernii 2010 - 2011 în Oltenia Academia Româna, Institutul de Geografie, Revista Geografica T. XIX -XXI 20122014 Serie noua Bucuresti 2014, Edit. Ars Docendi 2014, Universitatea din Bucuresti, pp. 37-48.
Marinica, I. (2006), Fenomene climatice de risc în Oltenia, Edit. Autograf MJM, CRAIOVA, 386 p.
Marinica I., Andreea, M. F. (2013), Pluvial hazards in Oltenia in may 2012, Riscuri si
Sandu I., Mateescu, E., Marinica, I., Vatamanu, V. V. (2012), Consideratii privind clima Olteniei si tendinte actuale, Publicatiile Societatii Nationale Române pentru Stiinta Solului, nr 38, a XX-a Conferinta Nationala de Stiinta Solului. Starea de calitate a resurselor de sol si protectia mediului în Oltenia (judetele Dolj, Gorj, Mehedinti). General conditions and natural resources, Craiova 26 august-1septembrie 2012, pp. 44-80, Editura Sitech http://stirileprotv.ro/stiri/actualitate/

[^0]: ${ }^{1}$ The values marked with * are rainfall records for the period after 1955. Obârșia Lotrului and Halânga meteorological stations with short stream data can not be taken into consideration for the average values, that is why they are included as annex rows in tables.
 ${ }^{2}$ Bâcleș, Voineasa and Obârșia Lotrului meteorological stations became autonomous (automatic functioning): in July 2011 (Bâcleș) and December 2009 (Voineasa and Obârșia Lotrului), and as a result the rainfall sensor is covered in the cold season, so the monthly rainfall data in the winter months at these stations are incorrect. As a result, the annual amounts after these years are also incorrect.

