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Abstract  
Convolutional Neural Network is known to achieve high accuracy in solving classification, 
recognition, and detection problems. In a real-time environment, time is an important factor 
of consideration. Even though most CNN-based architectures achieved considerably high 
accuracy, they are still slow even with high-end hardware. Therefore, this paper compares 
the time-accuracy tradeoff between two recent CNN-based learning architectures in 
detecting a driver’s fatigue status. In our work, we define fatigue based on the rate of eye 
blinking. We developed a proof of concept systems, and evaluate the systems based on 
accuracy and detection speed. The accuracy and speed of both learning architectures were 
trained and tested using the Closed Eyes in the Wild (CEW) containing 1,193 closed eyes 
images and 1,232 opened eyes images. As MobileNet-SSD and YOLO v3 were pre-trained 
using a general COCO dataset, they were further configured and fine-tuned to optimize the 
results based on the CEW datasets, The results showed that YOLO v3 has slightly higher 
meanAveragePrecision(mAP) than MobileNet-SSD but slower detection  speed(ms), while 
MobileNet-SSD proved that it has much faster speed but still maintaining high accuracy. The 
results of the research also showed that there is a trade-off between speed and accuracy 
which there was a loss of accuracy to obtain faster speed. This research also proved that 
lightweight MobileNet-SSD can minimize the accuracy loss to gain speed. The accuracy of the 
MobileNet-SSD learning model was still considered high and the detection speed was far 
higher than YOLO v3 learning model. Therefore, MobileNetSSD learning model was selected 
to have the best speed and accuracy trade-off in this research.  
Keywords: Real-time Fatigue Detection, Convolutional Neural Network, MobileNet-SSD, 
YOLOv3 
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Introduction  
Thirty-one percent of road accidents worldwide are caused by the driver's fatigue and 

drowsiness (Bhardwaj & Balasubramanian, 2018). Therefore, several measures were taken by 
car manufacturers to alleviate this crucial problem by using various technologies. One of it is 
using a driver's fatigue monitoring system to detect the onset of drowsiness in drivers, while 
the vehicle is in motion. There are three categories of the fatigue detection system which are 
based on vehicle status, behavioural, and physiological (Shakeel et al., 2019). The vehicle 
status-based detection system is a system that functions by inspecting or monitoring the car’s 
lane switching, steering motion, speed, pressure on the pedal and others. On the other hand, 
the behavioural-based system depends on the images and videos from a camera that 
monitors the driver's behaviour (Shamsuddin et al., 2017). Finally, the physiological-based 
systems monitor the physiological signal emitted by the driver such as Electromyography 
(EMG) (Abbood et al., 2014), Electroencephalography (EEG) (Khushaba et al., 2011), 
Electrocardiography (ECG) (Balasubramanian & Bhardwaj, 2019), and Electrooculography 
(EOG) (Bharadwaj et al., 2018). The vehicle status and physiological-based systems are 
considered not robust as the vehicle status-based is constrained to the driver's varying habits 
and the physiological-based systems caused annoyance and irritation to the driver as the 
electrodes are body intrusive (Shakeel et al., 2019). In this paper, the behavioural-based 
approach is chosen because human behaviours related to fatigues are generally consistent 
across culture and races. Thus, these behaviours can be taught using machine learning 
techniques coupled with computer vision to produce robust systems (Shakeel et al., 2019).  

 
Machine learning techniques, particularly deep learning (Saufi et al., 2018) (Yahya et 

al., 2020) (Sharifuddin et al., 2019) has been proven to solve real-world applications related 
to computer vision. Despite achieving high accuracy in classification, detection and 
recognition applications, the deep learning approach is still slow in execution time even with 
high-end hardware. Based on Liu et al (2016), while most deep learning-based detection 
systems are accurate, they are too slow to be applied in real-time. With the rapid 
development of deep learning, lightweight architectures (Muhammad et al., 2019) were 
introduced to solve the real-time problem. Therefore, this paper aims to investigate the 
recent lightweight deep learning works that have solved object detection problems in real-
time. Then, we further developed a proof of concept for a fatigue detection system and 
evaluate the deep learning models based on the accuracy and speed. The robustness of the 
driver fatigue detection system does not only depend on how accurate the system is but also 
the time complexity needs to be low so that it can be implemented in real-time.  

 
Related Work  

In behavioural-based fatigue detection, the driver's eye status is obtained using video 
images in real-time. The process begins with face detection followed by eyes localization. 
Once the eyes are localized, the driver's fatigue status is determined using the theory of 
PERCLOS (Percentage of Eyelid Closure Over the Pupil Time) introduced by (Wierwille et al., 
1994). The metric PERCLOS is calculated by counting the number of frames in which there was 
no pupil detected and dividing this by the total number of frames for a specific time interval. 
The higher the number of PERCLOS, the higher the driver's fatigue status.  In 2017, Chen et 
al., the face detection was done using the skin colour feature, and the horizontal and vertical 
curve pitch of the eyes were used to localize the exact position of the eyes. The eye state was 
determined by using the percentage of the pupil opening. If the pupil is 20% opened, the eye 



INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES 
Vol. 1 1 , No. 12, 2021, E-ISSN: 2222-6990 © 2021 
 

2411 
 

is considered as opened, and closed, otherwise. The fatigue status was measured using 
PERCLOS. The YCbCr colour space used in this study can better separate the brightness 
component from the colour image to reduce the impact caused by light interference. 
However, the eyes cannot be located if they were occluded, thus significantly reduced the 
detection effectiveness. In their work, Sravan et al (2018) used the Viola-Jones algorithm for 
face detection and the eyes localization. Simple image processing techniques were then 
employed to convert the eyes into binary images, and the percentage of white and black was 
calculated using a threshold value to determine whether the eyes were opened or closed. The 
fatigue status was detected using PERCLOS. This method was simple, did not require prior 
information of the image, computationally inexpensive and was practical for real-time 
implementation. However, the thresholding technique was not robust to illumination and 
colour variance, and it was also overly sensitive to noise.  

 
Recent work of fatigue detection showed an increase in using Convolutional Neural 

Network (CNN) to overcome the limitations of previous work.  The research done by Shakeel 
et al. (2019) used a Convolutional Neural Network (CNN) architecture known as MobileNet 
together with Single Shot Detector (SSD). The MobileNet-SSD platform was trained using 
different datasets: 1) FDDB (Jain & Miller, 2010) comprising 5,171 faces in 2,845 images 2) 
YawDD (Abtahi et al., 2014) consisting of two sets of videos that were recorded using two 
different camera locations inside a car 3) 1,192 images from Closed Eyes in the Wild (CEW) 
dataset and 4) 2,691 custom images (Song et al., 2014  It was then used to detect the face, 
open and closed eye with an average accuracy of 83.7%. The proposed MobileNet-SSD 
performed in a wide variety of conditions, with varying illumination conditions, poses and 
occlusions, and in real-world driving. However, due to the lack of training in low lightings, the 
accuracy reduced when the lighting came from the backside of the camera lens. Another 
notable work of fatigue detection was done by Jabbar et al. (2020) using Faster Region 
Convolutional Neural Network (Faster R-CNN). The model was trained using National Tsing 
Hua University (NTHU) Driver Drowsiness Detection Dataset (Weng et al., 2016) which 
included 22 different ethnicities of subjects in day and night conditions. This research 
produced a relatively high accuracy of 83.3% to detect facial landmarks. However, occlusion 
and bad lighting conditions affected the accuracy significantly.  

 
To fulfill the aim of this study, a literature search on previous work of object detection 

using CNN-based models was conducted. In Huang et al (2017), a speed/accuracy trade-off 
evaluation was done between Faster Region-CNN (Faster R-CNN) (Ren et al., 2015), Region 
Fully Connected Network (R-FCN) (Dai et al., 2016) and Single Shot Detection (SSD) (Liu et. al., 
2016). Six different feature extractors and other critical parameters were used to achieve fair 
comparisons. The training pipelines for SSD, Faster R-CNN and R-FCN were recreated in 
TensorFlow as the detection platform. The results showed that R-FCN and SSD models were 
faster on average, compared to Faster R-CNN. However, Faster R-CNN produced more 
accurate models. Out of all the fastest models, SSD models with Inception v2 and MobileNet 
feature extractors are the most accurate. Even though SSD models typically performed poorly 
on small objects, they are competitive with Faster RCNN and R-FCN on large objects, even 
outperforming the faster and more lightweight feature extractors. As with speed, SSD-
MobileNet was the cheapest, requiring less than 1Gb (total) memory in almost all settings. A 
more recent work of (Redmon & Farhadi, 2018) compared variations of You Look Only Once 
(YOLO), RetinaNet and SSD learning models using COCO datasets. YOLO v3 showed the fastest 
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detection speed of 22ms and achieved second place for mean Average Precision (mAP) of 
55.3 after FPN-FRCN at 59.1. Even though the FPN_FRCN achieved the highest accuracy, the 
time taken was 172ms. Therefore, considering the time and accuracy trade-off, we chose to 
implement fatigue detection using YOLO v3 and MobileNet-SSD. 
 
Methodology 

In this work, the CNN architectures MobileNet-SSD from Shakeel et al. (2019) and 
YOLO v3 from Redmon et al. (2018) were adapted based on literature where MobileNet-SSD 
showed great accuracy compared to traditional method while YOLO v3 showed great accuracy 
and detection time. To compare both deep learning architectures, they were trained and 
evaluated using the same dataset. The research process flowchart of this research is shown 
in Fig 1. The dataset used was the Closed Eyes in the Wild (CEW) containing 1,193 closed eyes 
images and 1,232 opened eyes images (Song et al., 2014). The images resolution is 100 × 100 
pixels comprising a variety of people of different ethnicity, various skin colours, different ages, 
different facial features, different conditions of lighting and people with glasses and without 
glasses. See Fig. 2. For the dataset pre-processing, the images were annotated and labelled 
using LabelImg image annotator into two classes (i.e. Opened and Closed). Annotating the 
images involved drawing the bounding boxes and the labelling is the naming of the classes of 
the bounding boxes. Fig. 3 shows the LabelImg with bounding boxes drawn onto the images. 
The annotations were later saved in .xml format for the MobileNet-SSD and were converted 
in .txt format for the YOLO v3. Eighty percent (1,963 images) of the dataset from each class 
was further used for training and twenty percent of dataset from each class was used for 
testing. The next step was to develop the learning architectures and configured them for 
training and testing. 

 
Fig 1.: Experiments flowchart 
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Fig. 2: Samples from CEW image dataset (Top: Opened eyes, Bottom: Closed eyes) 
 

 
Fig 3: LabelImg with bounding boxes (Class: Closed) 

 
The development of learning architectures involves the installation of software tools 

and libraries. For MobileNet-SSD, the Tensorflow Object Detection API repository from 
GitHub was cloned into the local machine and configured. Meanwhile, for YOLO v3 the 
Darknet repository (Redmon, 2016) was cloned into the cloud machine which is the Google 
Colab and was configured. Yolo V3 configurations were fine-tuned as follows: 

batch=64; subdivisions=16; max_batches = 4000; steps=3200, 3600  
The ‘batch’ was the size of the dataset loaded per iteration. The ‘subdivisions’ was the fraction 
of ‘batch’ that was sent to the GPU for processing until the total ‘subdivisions’ sent to GPU 
was equal to the number of ‘batch’. The ‘max_batches’ was the maximum number of 
iterations for the training. The ‘steps’ was the number of iterations where the learning rate 



INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES 
Vol. 1 1 , No. 12, 2021, E-ISSN: 2222-6990 © 2021 
 

2414 
 

was reduced ten times from the previous learning rate. To reduce GPU memory overload, the 
‘batch’ was set to 64 and ‘subdivisions’ was set to 16. The filter of every convolutional layer 
was edited to reduce time complexity based on its number of class. We used 21 filters as 
calculated from (1) (Redmon, 2016).  
 

N𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 3(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 + 5) (1) 
 
The training phase was done when the image dataset together with annotation files 

were fed into the learning architecture. For the training, we used the pre-trained YOLO v3 and 
MobileNet-SSD that were trained using Microsoft Common Objects in Context (COCO) dataset 
(Lin et al., 2014). The dataset contains 328,000 images, 2.5 million labeled instances and 91 
object types. The training of MobileNet-SSD was done on a computer with Intel Core i5-
7300HQ 4-cores CPU that can handle 4 threads, and maximum clock speed of 3.5GHz. with a 
GPU of Nvidia GTX 1050 that has Video RAM(VRAM) of 4GB. The RAM used in this paper 
contained 8GB of memory with speed of 2400 MH. Training on YOLO v3 used the Google Colab 
platform which provided CPU of Intel Xeon 2.3GHz dual core processor and GPU of Nvidia 
Tesla K80 which consists of 12GB VRAM. Google Colab also provides 13GB of RAM with 60GB 
of storage. During training, the predicted bounding boxes and classes were compared with 
the ground truth object to obtain the mean Average Precision (mAP). The prediction time for 
each image also was recorded to obtain the average time (ms) so that the trade-off between 
speed and accuracy of the two models can be analysed. The MobileNet-SSD model started 
training every 5 minutes, the model saved the checkpoint of the training and automatically 
ran the testing. For YOLO v3 in Google Colab, the weight of the training was saved for every 
100 steps.  

 
To determine if the driver is drowsy or not, the threshold value for video is required 

for the duration of eyes closed and the eyes blinking rate. The blinking of eyes was stated to 
take a duration of 0.4s (Shakeel et al., 2019). In a 30 frames per sec (fps) video, the threshold 
value was calculated as in (2). 

 
Threshold = 0.4 x fps(30) (2) 

 
A normal person blinked more than ten times per minute, while a sleepy person blinked less 
(Pasaribu et al., 2019). If a person closed and opened his/her eyes in the duration of 0.4 
second, the blink counter increased. If the blink rate was below ten times per minute, then 
the driver was considered fatigue/drowsy. For the duration of eyes closure, if the driver’s eyes 
were closed more than 0.5 seconds, the driver was considered as fatigue/drowsy (Islam, 
2019). 
  

Evaluations of the two learning models were done using accuracy measured by 
meanAveragePrecision (mAP) and detection speed (ms). Calculation of mAP involved the 
computation Average Precision (AP) for each class, in our case Opened and Closed classes. 
The understanding of AP requires the understanding of intersection over union (IoU), which 
is the ratio of area of intersection and the area of union between the predicted and ground 
truth bounding boxes (Ren, 2019). IoU is responsible to determine whether the predicted 
bounding box is True Positive (TP), False Positive (FP) or False Negative (FN). Typically, the 
prediction is considered as TP if the IoU is more than 0.5. The bounding box is considered as 
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FP if the IoU is less than 0.5. If the predicted bounding box has IoU more than 0.5 but detected 
as a wrong class, it is considered as FN. AP is defined as the area under Precision-Recall (PR) 
curve. Recall can be simply described as the True Positive (TP) rate of the detected objects 
and Precision measures how accurate is your predictions. Before PR curve is plotted, the 
Interpolated Precision, Pinterp, was calculated at each recall level, r, by taking the maximum 
precision measured for thar r as seen in (3). 
 

 

(3) 

 
AP per class was then computed by summing IP at 11 different levels starting from 0 until 1. 
The calculation of AP can be seen in (4). 
 

 

(4) 

 
Finally, mAP was calculated by taking the AP of each class. 
 
Results and Discussion  

In this section the accuracy (mAP) and detection speed (ms) of MobileNet-SSD is 
presented followed by YOLO v3. Finally, comparison of the two learning models was done. 
The training of MobileNet-SSD took approximately five hours and 128,000 steps. The overall 
mAP scored at 53.29% with average loss of 2.967. Fig. 4 shows the mAP of classes averaged 
over IOU thresholds ranging from 0.5 to 0.95 with 0.05 increments. Based on Fig. 4, the 
gradient of the training decreased after 1 hour of training at 25,000 steps. Then the mAP 
slightly increased until the end of the training.  
 

 
Fig. 4: Overall mAP of MobileNet-SSD 

 
In MobileNet-SSD, the mAPs of detected objects were evaluated in different sizes. 

Large objects were defined as objects with sizes more than 96 × 96 pixels, medium objects 
were objects with sizes ranging from 32 × 32 pixels to 96 × 96 pixels, mAP of small objects 
were for objects with sizes below 32 × 32 pixels. The mAP of large objects remained constant 
at -1 as all the eyes were smaller than 96 × 96 pixels, thus the mAP was deemed irrelevant. 
For medium-sized objects, the mAP of MobileNet-SSd achieved 58.33%, while the mAP of 
small-sized objects scored lower at 53.34%. This is aligned with Tsang (2018) stating that 

Time 
(hr) 
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MobileNet-SSD has difficulties in detecting small objects. To find the optimal threshold for 
MobileNet-SSD, Optimal Threshold Tuning was done by evaluating the mAP at thresholds 0.5 
and 0.75 IOU. The mAP at 0.5 IoU was 97.8% while the mAP at 0.75 IoU was 51.28%. This 
shows that the better threshold value was at IoU 0.5. The detection speed of the MobileNet-
SSD was 135.5ms running on laptop with Nvidia GeForce 940MX GPU. For YOLO v3 learning 
model, the Darknet platform can only run evaluation using threshold of 0.5 IOU. The mAP of 
the YOLO v3 at 0.5 IOU was 99.14% which was slightly better than the MobileNet-SSD. The 
detection speed of YOLO v3 that was run on laptop with Nvidia GeForce 940MX was 
497.51ms.  

 
 The results were summarized in Table 1. For comparing MobileNetSSD and YOLO v3, 

the mAP at threshold of 0.5 IOU was chosen because the optimal mAP on MobileNet-SSD was 
at 0.5 IOU and YOLO v3 was only able to be tested on mAP at 0.5 IOU threshold. Based on 
Table 1, YOLO v3 showed a slightly better mAP at 0.5 IOU which made it slightly better at the 
eye detection and classification. On the other hand, MobileNet-SSD showed a faster detection 
than YOLO v3 which was 3.67 times faster. To find the best trade-off between detection speed 
and accuracy, the difference between both detection time and accuracy (mAP) was 
determined. Based on Table 1, YOLO v3 showed 1.34% higher mAP than MobileNetSSD but 
extremely slower detection speed by a factor of 3.67. The results are in contrast with the 
research made by Redmon (2018) that mentioned that YOLO v3 can detect three times faster 
than the SSD model but the results of this research showed that the deep learning model that 
showed faster detection speed was the MobileNet-SSD. 
 
Table 1:  
Comparisons of MobileNet-SSD and YOLO v3 Accuracy and Detection Speed 

Result\Model MobileNet-SSD YOLO v3 

mAP Overall 53.29% NA 

mAP (Large Object) -1 NA 

mAP (Medium Object) 58.33% NA 

mAP (Small Object) 53.34% NA 

mAP(0.5IOU) 97.8% 99.14% 

mAP(0.75IOU) 51.28% NA 

Detection Speed(ms) 135.5 497.51 

 
 The detection speed and accuracy from the work done by Shakeel et al. (2019) to 
construct the MobileNet-SSD model in this research was 200ms and the mAP at 0.5 IOU was 
83.7%. The results of this research showed that the MobileNet-SSD deep learning model 
constructed in this research was better in terms of accuracy and speed than the MobileNet-
SSD in the work done by Shakeel et al. (2019) for driver’s fatigue detection. The detection 
speed for this research also was faster than the work done by Shakeel et al. (2019) because 
this research used a better hardware to make predictions at the frames of webcam’s videos. 
Shakeel et al. (2019) only used Raspberry Pi 3 and mobile devices to make predictions on 
webcam video and this resulted in slower detection speed. As for the YOLO v3 that adopted 
Redmon (2018)’s work, the results were only better for the mAP which was 99.14% while 
work from Redmon (2018) achieved only 57.3%. The detection speed of YOLO v3 in this 
research was much slower which was 497.51ms in average while the YOLO v3 from Redmon 
(2018)’s achieved the average detection speed of 22ms. The detection speed for YOLO v3 and 
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MobileNet-SSD in this research was slower than the detection speed of YOLO v3 and SSD in 
research conducted by Redmon (2018). This is because the hardware used by Redmon (2018) 
was Nvidia Titan X that was significantly better than hardware used in our work that only used 
Nvidia 940MX to run the detection on webcam videos. 
 
Conclusion  

The research of driver’s fatigue detection is crucial for future integration of deep 
learning models into the real-time systems. Two deep learning models which are MobileNet-
SSD and YOLO v3 were compared in terms of accuracy and detection speed of a driver’s 
fatigue. Even though, MobileNet-SSD scored a slightly lower mean Average Precision from 
YOLO v3, but the detection speed of MobileNet-SSD surpassed YOLO v3 by almost 
quadrupled. Therefore, we concluded that MobileNet-SSD has a better speed and accuracy 
tradeoff compared to YOLO v3.  However, further work needs to be done to improve the 
tradeoff. The limitation of the research is that the training and testing datasets used only 
images with resolution of 100 × 100 pixels. This caused the training to miss some features in 
the closed and opened eyes. Besides that, this research also did not cover the detection 
during nighttime because the dataset did not include the images during night time such as 
infrared images captured from infrared cameras. Detection speed can be improved by 
removing the unnecessary neuron in the CNN-based models and this method is called 
pruning. Pruning reduces the complexity of a network to remove unwanted computations 
and subsequently increases the detection speed. 
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