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Abstract 
The escalating global incidence of diabetes emphasizes the imperative for prompt detection 
to alleviate significant health adversities. This investigation assesses the efficacy and 
robustness of three machine learning algorithms—Decision Tree, Support Vector Machine 
(SVM), and Naive Bayes—utilizing methodologies such as Train-Test Split, K-Fold Cross 
Validation, and Stratified K-Fold Cross Validation. Critical performance indicators including 
Accuracy, Precision, Recall, F1-Score, and ROC-AUC were meticulously examined, with 
standard deviation employed to evaluate the stability of the models. SVM consistently 
surpassed the other algorithms, exhibiting superior accuracy and reliability across the various 
validation approaches, particularly within the context of Stratified K-Fold Cross Validation. 
Naive Bayes revealed commendable recall efficacy, while Decision Tree experienced 
augmented stability through the application of cross-validation techniques. The results 
underscore the significance of employing cross-validation methods, particularly Stratified K-
Fold, for dependable model assessment in scenarios characterized by imbalanced datasets. 
Subsequent research endeavors should investigate ensemble methodologies and data 
augmentation strategies to further enhance the resilience of the models. 
Keywords:  Early Diabetes Detection, Machine Learning, Support Vector Machine (SVM), K-
Fold Cross Validation, Model Stability 
 
Introduction  
Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood glucose 
levels, which, over time, can lead to serious health complications affecting the heart, blood 
vessels, eyes, kidneys, and nerves .The global prevalence of diabetes has been rising steadily; 
as of 2021, approximately 537 million adults worldwide are living with the condition, and this 
number is projected to increase to over 780 million by 2045 (Bereda.,2022). 

   

                                         Vol 14, Issue 12, (2024) E-ISSN: 2222-6990 
 

 

To Link this Article: http://dx.doi.org/10.6007/IJARBSS/v14-i12/24408        DOI:10.6007/IJARBSS/v14-i12/24408 

Published Date: 30 December 2024 



INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES 
Vol. 1 4 , No. 12, 2024, E-ISSN: 2222-6990 © 2024 

4241 

Early detection of diabetes is crucial for preventing or delaying the onset of complications. 
Timely diagnosis allows for prompt intervention, enabling individuals to manage their 
condition effectively through lifestyle modifications and medical treatment . Despite the 
importance of early detection, many cases remain undiagnosed due to the often 
asymptomatic nature of diabetes in its initial stages (Dall et al., 2014). 
 
In recent years, machine learning techniques have emerged as promising tools for enhancing 
early diabetes detection. These methods can analyze large datasets to identify patterns and 
risk factors associated with the development of diabetes, potentially improving the accuracy 
and efficiency of diagnostic processes . However, the application of machine learning models 
in this context faces challenges, particularly concerning the stability and reliability of model 
performance (Al-Sideiri et al., 2019) 
 
Model performance instability refers to significant variations in a model's predictive accuracy 
when applied to different datasets or under varying conditions. This instability can result from 
factors such as limited sample sizes, data imbalance, and the inherent variability in biological 
data . In the context of diabetes detection, performance instability poses a barrier to the 
widespread adoption of machine learning models in clinical practice, as inconsistent results 
can undermine trust in these diagnostic tools. (Haq.,2020). 
 
Addressing model performance instability is essential for the advancement of reliable 
machine learning applications in early diabetes detection. Techniques such as cross-validation 
and ensemble learning have been explored to enhance model stability. Cross-validation 
involves partitioning the data into subsets to train and evaluate the model multiple times, 
thereby assessing its robustness. Ensemble learning methods, like bagging and boosting, 
combine the predictions of multiple models to reduce variance and improve stability . (Husain 
& Khan, 2018, Yang.,2020). 
 
Despite these efforts, achieving consistent and reliable model performance remains a 
challenge. Continuous research is needed to develop and validate models that can maintain 
stability across diverse populations and settings, ultimately ensuring that machine learning 
tools can be effectively integrated into clinical workflows for early diabetes detection. 
 
This study aims to measure and analyze the stability of the model through various evaluation 
metrics such as accuracy, precision, recall, F1-score, and ROC-AUC. By employing these 
metrics, the study seeks to provide a comprehensive assessment of the performance of the 
developed predictive model. Additionally, the study will evaluate the variability of the results 
through the analysis of the standard deviation of each metric, derived from  cross-validation 
approach. This approach is intended to assess the extent to which the predictive model 
remains stable when applied to different datasets or under varying conditions, thereby 
offering confidence in its reliability for early diabetes detection. 
 
The structure of this paper is as follows: The Introduction provides an overview of the 
importance of early diabetes detection and the challenges in developing reliable machine 
learning models. It also highlights the need to evaluate model consistency, focusing on 
comparing Train-Test Split and K-Fold Cross Validation methods. Research Background and 
Motivation section reviews previous studies on machine learning techniques in diabetes 
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detection, noting gaps in model stability and performance. The Methodology outlines the 
experimental setup, including the dataset, preprocessing steps, and models used, explaining 
both Train-Test Split, K-Fold Cross Validation and Stratified K-Fold  approaches. The Results 
and Discussion presents the comparative findings, assessing key metrics such as Accuracy, 
Precision, Recall, F1-Score, and ROC-AUC to examine model stability across data variations. In 
the discussion, the strengths and weaknesses of each method are analyzed, with emphasis on 
their impact on model performance in early diabetes detection. Finally, the Conclusion 
summarizes the findings, underscoring the importance of selecting appropriate partitioning 
strategies, and suggests future research directions for enhancing model accuracy and 
stability. 
 
Research Background and Motivation  
Early detection of diabetes is crucial for effective disease management and preventing long-
term complications. In recent years, machine learning models have shown significant 
potential in enhancing early diabetes diagnosis. However, implementing these models 
presents several challenges, particularly when dealing with imbalanced datasets. Imbalanced 
datasets, where diabetic cases are significantly fewer than non-diabetic ones, can lead to 
biased models that prioritize the majority class, resulting in poor predictive performance for 
the minority class (García-García et al., 2021). This imbalance is compounded by the limited 
sample sizes typically available for diabetic cases, which can hinder the model’s ability to learn 
effectively (Haq et al., 2020). Furthermore, the inherent variability in biological data, such as 
differences in patient demographics and comorbidities, adds complexity to the training of 
machine learning models, often leading to unstable performance across different datasets  
(Brnabic & Hess, 2021) 
 
To address these challenges, several strategies have been developed. Resampling techniques, 
such as Synthetic Minority Oversampling Technique (SMOTE), are frequently employed to 
generate synthetic data for the minority class, helping to balance the dataset and improve 
the model's performance (Johnson et al., 2018). Additionally, cost-sensitive learning adjusts 
the learning algorithm by assigning higher penalties for misclassifying minority class cases, 
thereby encouraging the model to focus on correctly identifying diabetic cases (Brown et al., 
2021). Ensemble learning methods, such as bagging and boosting, have also been explored, 
combining predictions from multiple models to enhance overall stability and accuracy, 
particularly in the context of imbalanced datasets (Smith et al., 2019). 
 
Despite these advancements, challenges remain in achieving reliable and consistent model 
performance when applied to diverse datasets. Continuous research is needed to develop 
robust machine learning models capable of handling imbalanced data effectively and ensuring 
accurate early diabetes detection (Miller et al., 2020). 
 
The train-test split method is a fundamental technique in machine learning used to divide a 
dataset into two subsets: one for training the model (training set) and the other for testing its 
performance (test set). The primary goal of this method is to evaluate the model’s ability to 
generalize to unseen data. While this approach is widely employed, it has several limitations, 
particularly concerning instability and variability in performance evaluation results. 
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One major challenge with the train-test split method is the instability in evaluation outcomes. 
Random data splitting can lead to significant variations in the model’s performance metrics. 
For instance, if the dataset is split multiple times with different seeds, the same model may 
exhibit varying levels of performance. This indicates that the evaluation results are highly 
dependent on how the data is divided, introducing instability into the model's performance 
assessment (Goot, 2021). 
 
Additionally, the variability caused by random data partitioning is another frequent issue. 
Each time this method is applied without a fixed seed, the resulting subsets may differ, 
particularly when dealing with imbalanced datasets. This can affect both the training and 
testing processes, leading to challenges in reproducing consistent outcomes  (Ebubeogu & 
Lee, 2019). 
 
Another limitation of the train-test split approach is that it only provides a single data point 
for evaluating model performance, which may be insufficient for comprehensively 
understanding the model's capabilities. A model may perform well on one specific test set but 
not on others, especially when there is high variability in the data. This suggests that the train-
test split method may not always offer an accurate representation of the model’s ability to 
handle diverse datasets  (Rekha et al., 2019). 
 
To address these limitations, cross-validation is often employed as an alternative. Cross-
validation involves partitioning the dataset into multiple subsets, with each subset used as a 
test set while the remaining subsets serve as the training data. This process is repeated 
multiple times, ensuring that the model is evaluated across various data partitions. As a result, 
cross-validation provides a more stable and comprehensive evaluation of the model's 
performance (Catania et al., 2022). 
 
In conclusion, while the train-test split method is a simple and widely used technique, it has 
inherent limitations regarding instability and variability in results. Therefore, cross-validation 
is recommended for achieving more robust and reliable model evaluations. 
 
Cross-validation has become a cornerstone technique in the evaluation of machine learning 
models due to its ability to provide robust estimates of model performance. Among the most 
commonly used cross-validation methods is K-Fold Cross-Validation, which partitions the 
dataset into k equally sized subsets, or folds. The model is trained on k-1 of these folds and 
tested on the remaining fold. This process is repeated k times, with each fold used once as 
the test set, and the average performance across all folds is reported. This iterative process 
reduces the likelihood of model overfitting, as the model is tested on multiple, different 
portions of the data. Furthermore, by averaging results across multiple folds, K-Fold Cross-
Validation mitigates the risk of performance being skewed by a single, unrepresentative train-
test split (Zhang et al., 2020). 
 
However, K-Fold Cross-Validation is not without limitations. One of its primary drawbacks 
arises when it is applied to imbalanced datasets. Imbalanced datasets, where certain classes 
are significantly underrepresented, can result in folds that do not accurately reflect the true 
class distribution of the overall dataset. For example, if a dataset for binary classification has 
90% of its instances belonging to the majority class and only 10% to the minority class, random 
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partitioning can lead to some folds containing very few or no instances of the minority class. 
As a result, the model's ability to correctly predict the minority class is not properly evaluated, 
leading to misleading performance metrics, such as an inflated accuracy score, where the 
model performs well on the majority class but poorly on the minority class (Chawla et al., 
2021). 
 
To address the issue of imbalanced datasets, Stratified K-Fold Cross-Validation is a commonly 
recommended approach. Stratified K-Fold differs from standard K-Fold in that it ensures each 
fold maintains the same proportion of classes as the original dataset. By preserving the class 
distribution within each fold, Stratified K-Fold helps prevent the bias that can arise in standard 
K-Fold when dealing with imbalanced data. This method is particularly advantageous in 
classification tasks, where accurately predicting the minority class is often as important, if not 
more so, than predicting the majority class. In this way, Stratified K-Fold provides a more 
reliable measure of a model's performance across different classes, especially in cases where 
the dataset is highly imbalanced (Li et al., 2018). 
 
Stratified K-Fold Cross-Validation is particularly useful in medical diagnostics, where datasets 
are often imbalanced due to the rarity of certain conditions. For instance, in diabetes 
detection, where positive cases may form a small fraction of the total dataset, using standard 
K-Fold might lead to folds with few or no positive cases, which hinders the model's ability to 
learn meaningful patterns related to the minority class (Khoshgoftaar & Gao., 2021). By 
ensuring that each fold contains a proportional number of positive and negative cases, 
Stratified K-Fold allows the model to be trained and tested more effectively across the entire 
spectrum of the dataset. 
 
Another variant of cross-validation that is gaining attention in recent research is Repeated 
Stratified K-Fold Cross-Validation, which adds further robustness by repeating the Stratified 
K-Fold process multiple times with different random splits. This approach ensures even 
greater reliability of the model evaluation, as it averages the performance across many 
different stratified splits, reducing the potential variance in the results. By repeating the 
process, the impact of random chance on any single run of cross-validation is mitigated, 
providing a more stable estimate of the model's true generalization performance 
(Brownlee.,2019). 
 
Despite these advantages, it is important to recognize that while K-Fold and Stratified K-Fold 
Cross-Validation offer significant improvements over a simple train-test split, they still have 
limitations.  
 
For instance, cross-validation can be computationally expensive, especially for large datasets 
and complex models. Moreover, while these techniques help address issues related to data 
partitioning, they do not directly address other challenges such as model bias or variance, 
which require additional methods like hyperparameter tuning or model ensembling to fully 
mitigate (Perez et al., 2020). 
 
In conclusion, K-Fold Cross-Validation and Stratified K-Fold Cross-Validation are essential 
techniques for evaluating machine learning models, especially when dealing with imbalanced 
datasets. K-Fold provides a robust estimate of a model’s generalization ability by offering a 
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more reliable alternative to a simple train-test split. However, Stratified K-Fold further 
improves this by ensuring class distributions are maintained within each fold, leading to fairer 
and more accurate performance evaluations, particularly for tasks involving minority classes. 
In this study, the comparison between K-Fold and Stratified K-Fold will provide valuable 
insights into the stability of classification performance, highlighting how each technique 
contributes to producing more reliable and generalizable outcomes in the context of data 
imbalance. 
 
Methodology 
Preprocessing Data 
The primary objective of this study is to develop a predictive model for early-stage diabetes 
detection using Diabetes Dataset. The dataset consists of data used for diabetes research on 
women of Pima Indian heritage, aged 21 and over, living in Phoenix, the 5th largest city of the 
State of Arizona in the USA. The data set consists of 768 observations and eight independent 
numerical variables. The target variable is specified as "result"; 1 indicates positive diabetes 
test result, 0 indicates negative diabetes. 
 
A series of comprehensive preprocessing steps were applied to the dataset prior to model 
training. These steps included addressing missing values, feature scaling, and partitioning the 
data into training and testing subsets. Feature scaling, in particular, is a crucial preprocessing 
step that ensures all features are on a comparable scale, which enhances the performance of 
machine learning algorithms by preventing bias toward features with larger numerical values. 
To normalize the input features, standardization techniques were employed, transforming 
the features to have a mean of zero and a variance of one. This was accomplished using the 
StandardScaler method from the scikit-learn library. Standardization is widely regarded as a 
robust scaling method, particularly in cases where the input data has varying units of 
measurement or exhibits different ranges. 
 
Algorithms Used 
Support Vector Machine (SVM) 
Support Vector Machine (SVM) (Rampisela & Rustam.,2018)  is a machine learning algorithm 
used to address both classification and regression problems, with a greater emphasis on 
classification tasks. In the context of this study, SVM is employed as a classification method 
due to its ability to efficiently separate data by identifying the optimal hyperplane that 
maximizes the margin between two distinct classes. 
 
SVM works by finding a hyperplane that separates the data of different classes, where this 
hyperplane aims to maximize the distance between the closest data points from each class. 
These closest data points are referred to as support vectors. Support vectors play a critical 
role in defining the hyperplane, and thus, they directly influence the construction of the SVM 
model. The SVM algorithm seeks to optimize the position of the support vectors to ensure 
that the separating margin between the classes is as large as possible, thereby reducing the 
risk of misclassification. 
 
SVM was selected due to its capability to perform well on datasets with a large number of 
features, even when the sample size is limited, and its effectiveness in handling complex 
classification problems. Additionally, SVM proves to be a highly effective tool for addressing 
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classification problems in imbalanced datasets, where the accuracy of classifying minority 
classes is of critical importance for this study (Fu et al.,2020) 

 
Figure 1: Representation of  SVM 
 
Naïve Bayes 
Naive Bayes (NB) is a probabilistic machine learning algorithm primarily used for classification 
tasks, although it can also be applied to regression problems. In the context of this study, 
Naive Bayes was selected as a classification method due to its simplicity and its ability to 
efficiently handle high-dimensional datasets (Abubakar et al., 2021). The algorithm operates 
on the assumption of feature independence, meaning that each feature contributes 
independently to the classification outcome, even though this assumption is rarely met in 
practice. Nonetheless, this assumption allows for quick and accurate computations in many 
cases. 
 
Naive Bayes works by calculating the posterior probability of each class based on the input 
features. It leverages Bayes' Theorem, which combines prior knowledge of the class 
probabilities with the likelihood of observing specific features given a class. The class with the 
highest posterior probability is chosen as the predicted outcome. 
 
Decision Tree 
Decision Tree (Purwanto et al.,2022; Subramani et al.,2023) is a machine learning algorithm 
used for both classification and regression tasks. The algorithm works by splitting the dataset 
into smaller subsets and forming a tree-like structure, resembling a flowchart, where each 
internal node represents a feature, each branch represents a decision, and each leaf node 
represents the outcome or prediction. 
 
The Decision Tree begins with a root node that represents the entire dataset. At this stage, 
the algorithm selects a feature to split the data into smaller subsets. Internal nodes follow, 
representing decisions based on particular features. These nodes continue to split the data 
into two or more subsets according to specific conditions. The tree ends with leaf nodes, 
which are the terminal nodes that provide the final predictions or outcomes.  
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Figure 2: Representation of Decision Tree 
 
Validation Techniques 
Train-Test Split 
The Train-Test Split method divides the dataset into two parts: a training set and a test set. 
The model is trained on the training set and evaluated on the test set. This method is simple 
and computationally efficient, making it ideal for quick performance assessments. However, 
it is prone to result variation, as the performance depends on a single random split of the 
data. This can lead to overfitting or underfitting, particularly when the dataset is small or 
imbalanced (Wen et al., 2019). While convenient, the Train-Test Split approach may not fully 
capture the model’s generalizability due to its limited evaluation scope. 

 
Figure 3: Representation of Train-Split Test 

 
K-Fold Cross Validation 
K-Fold Cross Validation divides the dataset into K equal parts, or folds. The model is trained 
and tested K times, with each fold acting as the test set once, while the remaining K-1 folds 
are used for training. This method provides a more comprehensive evaluation of the model's 
performance, as every data point is used for both training and testing. By reducing the risk of 
overfitting and providing a more robust estimate of model accuracy, K-Fold Cross Validation 
is especially useful in scenarios where a single Train-Test Split might yield biased results 
(Chicco & Jurman, 2020).  

 
Figure 4: Representation of K-Fold Cross Validation 
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Stratified K-Fold Cross Validation 
Stratified K-Fold Cross Validation is an enhancement of K-Fold Cross Validation that ensures 
each fold maintains the same class distribution as the entire dataset. This method is 
particularly beneficial when dealing with imbalanced datasets, where certain classes may be 
underrepresented. By preserving class proportions in each fold, Stratified K-Fold Cross 
Validation provides a more reliable evaluation of performance metrics, especially for Recall 
and F1-Score, which are sensitive to class imbalance (Gupta & Rani, 2021). It is widely 
regarded as a preferred method for classification tasks, where maintaining a balance of 
classes in the validation process is critical for accurate model assessment (Berrar, 2019). 

 
Figure 5: Representation of Stratified K-Fold Cross Validation 
 
Evaluation Metrics 
Accuracy 
The concept of accuracy serves as a prevalent evaluation metric within the domain of 
machine learning (ML), functioning to assess the efficacy of a classification model in 
predicting the appropriate class label for input data. It systematically quantifies the 
proportion of accurately predicted instances relative to the overall number of instances 
present in the data set. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑜. 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

In which, TP is the number of true positive outcomes. .FP is the number of false positive 
outcomes. TN is the number of true negative outcomes. FN is the number of false negative 
outcomes 
 
Precision 
Precision measures how correct the model's positive predictions are, specifically the ratio of 
true positives to the total predicted positives (true positives plus false positives). Precision is 
especially useful in situations where it is crucial that the model correctly identifies a positive 
class. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 
Recall, often referred to as sensitivity or the true positive rate, serves as a metric for 
evaluating the model's proficiency in accurately recognizing all pertinent instances belonging 
to a specific class within the dataset. It quantitatively assesses recall as the ratio of true 
positives (accurately predicted positives) to the total number of actual positives. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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F1-Score 
The F1 metric integrates both precision and recall into a unified measure, thereby offering a 
comprehensive assessment of model efficacy. The F1 score is particularly advantageous when 
attempting to achieve an equilibrium between facilitating accurate positive classifications 
(high precision) and maximizing the identification of positive instances (high recall). 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 
ROC-AUC 
The ROC AUC, an abbreviation for Receiver Operating Characteristic Area Under the Curve, 
serves as a prevalent metric within the realm of machine learning for assessing the efficacy 
of binary classification models. This metric articulates a model's proficiency in differentiating 
between affirmative and negative classes across various probability thresholds. 
 
Result and Discussion  
This section presents a comprehensive evaluation of three prominent machine learning 
models: SVM, Naive Bayes, and Decision Tree, tested using three distinct validation 
techniques: Train-Test Split, K-Fold Cross Validation, and Stratified K-Fold Cross Validation. 
The performance of these models was assessed using key metrics such as Accuracy, Precision, 
Recall, F1-Score, and ROC-AUC to measure their overall accuracy, sensitivity, and 
discriminatory power under different data partitioning scenarios.. 
Train-Test Split method was applied with three distinct random states (7, 21, and 42), with 
test size 0.2. The table 1 below summarizes the mean and standard deviation for each model 
across the different random states. 
 
This is followed by the results tables for the analysis of the K-Fold and Stratified K-Fold Cross 
Validation methods, using different K values of 3, 5, and 10, as presented in Tables 2 and  3. 
 
Table 1 
Result  Test-Train Split  

Metric SVM 
(Mean ±Std Dev) 

Naive  Bayes 
(Mean ±Std Dev) 

Decision Tree 
(Mean ±Std Dev) 

Accuracy 0.7124 ± 0.0564 0.7381 ± 0.0445 
 

0.7041 ± 0.0421 
 

Precision 0.63541 ± 0.0728 
 

0.6697 ± 0.0454 
 

0.5250 ± 0.1348 
 

Recall 0.6275 ± 0.0191 
 

0.5855 ± 0.1144 
 

0.5618 ± 0.1328 
 

F1-Score 0.5821 ± 0.0822 
 

0.6202 ± 0.0785 
 

0.5804 ± 0.0826 
 

ROC-AUC 0.6930 ± 0.0605 
 

0.7004 ± 0.0684 
 

0.6940 ± 0.0615 
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Table 2 
Result  K-Fold Cross Validation 

Model K 
Value 

Accuracy 
(Mean ±Std 

Dev) 

Precision  
(Mean ±Std 

Dev) 

Recall 
(Mean ±Std 

Dev) 

F1-Score 
(Mean ±Std 

Dev) 

ROC-AUC 
(Mean ±Std 

Dev) 

SVM 3 
 

0.7591 ± 
0.0244 

0.6966 ± 
0.0616 

0.5596 ± 0.0286 0.6190 ± 0.0289 0.8308 ± 0.0248 

5 
 

0.7735 ± 
0.0219 

0.7267 ± 
0.0446 

0.5672 ± 0.0513 0.6354 ± 0.0379 0.8316 ± 0.0242 

10 
 

0.7722 ± 
0.0296 

0.7268 ± 
0.0572 

0.5635 ± 0.0696 0.6316 ± 0.0544 0.8284 ± 0.0386 

Naïve  
Bayes 

3 
 
 

0.7422 ± 
0.0304 

0.6425 ± 
0.0484 

0.5896 ± 0.0413 0.6149 ± 0.0446 0.8092 ± 0.0368 

5 
 
 

0.7513 ± 
0.0186 

0.6621 ± 
0.0239 

0.5860 ± 0.0404 0.6214 ± 0.0320 0.8171 ± 0.0248 

10 0.7565 ± 
0.0330 

0.6743 ± 
0.0599 

0.5930 ± 0.0666 0.6288 ± 0.0508 0.8161 ± 0.0458 

Decision 
Tree 

3 
 
 

0.6966 ± 
0.0223 

0.5453 ± 
0.0238 

0.5148 ± 0.0651 0.5635 ± 0.0254 0.6561 ± 0.0368 

5 
 

0.7240 ± 
0.0553 

0.5764 ± 
0.0764 

0.5524 ± 0.0271 0.5818 ± 0.0634 0.6852 ± 0.0248 

 
10 

0.7044 ± 
0.0553 

0.5950 ± 
0.1134 

0.5858 ± 0.1162 0.5746 ± 0.1070 0.6680 ± 0.0458 

 
Table 3 
Result  Stratified  K-Fold Cross Validation 

Model K 
Value 

Accuracy 
(Mean ±Std 

Dev) 

Precision  
(Mean ±Std 

Dev) 

Recall 
(Mean ±Std 

Dev) 

F1-Score 
(Mean ±Std 

Dev) 

ROC-AUC 
(Mean ±Std 

Dev) 

SVM 3 
 

0.7591 ± 
0.0244 

0.6966 ± 
0.0616 

0.5596 ± 0.0286 0.6190 ± 0.0289 0.8308 ± 0.0248 

5 
 

0.7735 ± 
0.0219 

0.7267 ± 
0.0446 

0.5672 ± 0.0513 0.6354 ± 0.0379 0.8316 ± 0.0242 

10 
 

0.7722 ± 
0.0296 

0.7268 ± 
0.0572 

0.5635 ± 0.0696 0.6316 ± 0.0544 0.8284 ± 0.0386 

Naïve  
Bayes 

3 
 
 

0.7422 ± 
0.0304 

0.6425 ± 
0.0484 

0.5896 ± 0.0413 0.6149 ± 0.0446 0.8092 ± 0.0368 

5 
 
 

0.7513 ± 
0.0186 

0.6621 ± 
0.0239 

0.5860 ± 0.0404 0.6214 ± 0.0320 0.8171 ± 0.0248 

10 0.7565 ± 
0.0330 

0.6743 ± 
0.0599 

0.5930 ± 0.0666 0.6288 ± 0.0508 0.8161 ± 0.0458 

Decision 
Tree 

3 
 
 

0.6889 ± 
0.0176 

0.5437 ± 
0.0340 

0.5560 ± 0.0580 0.5576 ± 0.0468 0.6664 ± 0.0171 

5 
 

0.7071 ± 
0.0237 

0.6111 ± 
0.0602 

0.5748 ± 0.0507 0.5833 ± 0.0731 0.6888 ± 0.0448 

 
10 

0.6978 ± 
0.0761 

0.5881 ± 
0.0972 

0.5708 ± 0.1023 0.5634 ± 0.0985 0.6654 ± 0.0730 



INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES 
Vol. 1 4 , No. 12, 2024, E-ISSN: 2222-6990 © 2024 

4251 

The three tables above illustrate the performance comparison of three machine learning 
models, namely Decision Tree, SVM, and Naive Bayes, based on three different evaluation 
methods: Train-Test Split, K-Fold Cross Validation, and Stratified K-Fold Cross Validation. Each 
table presents the mean and standard deviation for key metrics such as Accuracy, Precision, 
Recall, F1-Score, and ROC-AUC for each model and evaluation method. 
 
The analysis results reveal performance differences between these methods for each model, 
as well as variation in the stability of the results as reflected by the standard deviation in the 
metrics. 
 
For Train-Test Split, this approach is quick and simple. However, the results exhibit variability 
due to the random partitioning of the dataset. This variability is particularly noticeable in 
imbalanced datasets, where random splits may not accurately represent the overall 
population. The standard deviations in the metrics for Train-Test Split are generally higher 
compared to the cross-validation methods, indicating less stable performance across 
different splits. For example, SVM shows an accuracy of around 0.712 but with a relatively 
high standard deviation of 0.056, reflecting variability in performance. Naive Bayes achieves 
the highest accuracy at 0.738, but still with some variability (standard deviation of 0.044). 
Decision Tree shows the weakest performance with an accuracy of approximately 0.704 and 
a standard deviation of 0.042, indicating that its results fluctuate due to the random allocation 
of data in the Train-Test Split method. This variation in performance can be attributed to the 
dependence of Train-Test Split on the random allocation of data, and the higher standard 
deviation highlights its limited stability. 
 
In K-Fold Cross Validation, the dataset is divided into several "folds," and the model's 
performance is evaluated by averaging the results across all folds. This method significantly 
reduces the variability observed in Train-Test Split and provides a more stable assessment of 
model performance, as evidenced by the lower standard deviations. In this analysis, SVM 
demonstrates consistent and superior performance, with the highest accuracy of around 
0.773 and a strong F1-Score of 0.635, reflecting a good balance between precision and recall. 
The standard deviation of accuracy is much lower (0.021), showing greater stability in the 
model’s performance across different folds. Naive Bayes also performs well, with an accuracy 
of approximately 0.751 and a standard deviation of 0.018, indicating consistent performance 
across different folds. Decision Tree, while showing lower performance compared to the 
other models, benefits from K-Fold Cross Validation’s stability, with an accuracy of 0.724 and 
a standard deviation of 0.055, highlighting an improvement in stability compared to Train-
Test Split. 
 
Stratified K-Fold Cross Validation offers additional advantages by ensuring that each fold 
maintains a balanced class representation, making it more suitable for imbalanced datasets. 
This method not only improves the overall performance of the models but also enhances the 
stability of the results, as reflected by the standard deviations. For instance, SVM again leads 
in performance, achieving the highest ROC-AUC (0.8316) with a standard deviation of only 
0.024, indicating highly stable performance. Naive Bayes follows closely with a ROC-AUC of 
0.8171 and a standard deviation of 0.025, reflecting similarly stable results. Decision Tree, 
while showing lower performance with a ROC-AUC of around 0.6888, demonstrates 
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improvements in precision and recall compared to Train-Test Split, and its standard deviations 
are generally lower, indicating more consistent performance across folds in this method. 
 
The comparison between these three methods indicates that SVM is the most effective model 
overall, particularly in K-Fold Cross Validation and Stratified K-Fold Cross Validation, where it 
achieves the highest scores in accuracy, precision, F1-Score, and ROC-AUC, with the lowest 
standard deviations, highlighting its stable performance. Naive Bayes offers balanced 
performance, excelling in recall, making it a good choice when the goal is to maximize positive 
class detection, and it also benefits from the reduced variability in results with lower standard 
deviations in K-Fold and Stratified K-Fold. Decision Tree, while the weakest in most metrics, 
especially in Train-Test Split, remains useful in scenarios where model interpretability is 
prioritized over high accuracy, and it also shows improvements in performance stability when 
using cross-validation techniques. 
 
While the table provides a detailed numerical comparison, the following line graph offers a 
visual representation of the same data, allowing for easier interpretation of trends and 
performance stability across the different validation methods. The graph highlights the 
variations in Accuracy, Precision, Recall, F1-Score, and ROC-AUC for each model, with the 
error bars reflecting the standard deviation, offering a clearer understanding of the models' 
consistency and overall performance. 
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Figure 5:Representation of line graph 
 
The performance analysis across different validation methods shows that SVM consistently 
outperforms other models, particularly in K-Fold and Stratified K-Fold Cross Validation, with 
an accuracy of 0.773 and low standard deviation, indicating stable results. Naive Bayes follows 
closely with an accuracy of 0.751, showing reliable performance, while Decision Tree lags 
behind with greater variability, especially in K-Fold Cross Validation. 
For precision, SVM leads with values above 0.72 and low variability, while Naive Bayes shows 
stable precision (0.56), while Decision Tree fluctuates. 
SVM also achieves the best balance in F1-Score (0.621), with Decision Tree showing 
improvement in Stratified K-Fold (~0.583). In ROC-AUC, SVM dominates with 0.831, while 
Naive Bayes follows closely (0.817). Decision Tree performs weaker, though it stabilizes in 
Stratified K-Fold. 
 
Conclusion and Future Work 
In conclusion, the analysis of model performance across both table and line graph 
presentations consistently demonstrates that SVM is the most reliable and high-performing 
model, particularly when combined with K-Fold and Stratified K-Fold Cross Validation. SVM 
not only achieves the highest accuracy but also maintains stability across all metrics, including 
Precision, Recall, F1-Score, and ROC-AUC, with minimal variability. This makes it the optimal 
choice for most scenarios, especially in handling imbalanced datasets where Stratified K-Fold 
Cross Validation plays a critical role in ensuring balanced representation and robust 
performance evaluation. Naive Bayes, while slightly behind SVM, provides balanced 
performance, excelling in Recall and ROC-AUC, making it a strong option for applications 
where identifying true positives is crucial. Decision Tree, though weaker overall, benefits 
substantially from Stratified K-Fold, which enhances its stability, particularly in Precision and 
Recall. 
 
These findings underscore the critical importance of employing cross-validation techniques, 
particularly Stratified K-Fold Cross Validation, when dealing with imbalanced datasets to 
ensure more reliable and stable model evaluations. For future research, it is recommended 
to explore ensemble methods such as Random Forest and Gradient Boosting to further 
improve the performance and stability of models like Decision Tree. Additionally, the use of 
nested cross-validation for fine-tuning hyperparameters and data augmentation techniques 
like SMOTE should be considered to address class imbalance and enhance overall model 
accuracy and robustness. Expanding these strategies could lead to significant advancements 
in model reliability, particularly for complex and imbalanced datasets. 
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