Vol 14, Issue 12, (2024) E-ISSN: 2222-6990

Performance Analysis of Proactive Routing Algorithm for a Multi-Hop Pipeline Network

Divya Nacciar Kumaran¹, Siva Kumar Subramaniam¹, Ahamed Fayeez Tuani Ibrahim¹, Vigneswara Rao Gannapathy¹, Sujatha Radhakrishnan²

¹Faculty of Technology and Engineering in Electronic and Computer, Universiti Teknikal Malaysia Melaka, Durian Tunggal, Melaka, Malaysia, ²Department of Embedded Technology (IoT and sensors specialization), School of Electronics and Communication Engineering Vellore Institute of Technology Vellore-632014, India Corresponding Author Email: fayeez@utem.edu.my

 To Link this Article: http://dx.doi.org/10.6007/IJARBSS/v14-i12/24405
 DOI:10.6007/IJARBSS/v14-i12/24405

 Published Date: 29 December 2024
 DOI:10.6007/IJARBSS/v14-i12/24405

Abstract

Safety and reliability are the main challenges for the oil and gas industry, especially in pipeline monitoring. An example of a recent accidents is the 2022 Lawas gas pipeline explosion, which raised more attention toward keeping advanced monitoring and control. These incidents create great importance for using WSN in real-time monitoring within industrial processes that present hazardous conditions. However, congestion, latency, and existing routing protocols' inefficiencies afflict these, hence limiting the effectiveness of WSNs in pipeline monitoring. It proposes the DSDVTRI protocol, an enhancement of the DSDV routing protocol, as a means by which these challenges could be improved through a mechanism of triple interleaving. The DSDVTRI protocol splits network traffic into three distinct paths which are α (alpha), β (beta), and δ (delta) significantly reducing congestion by distributing the load evenly. Unlike traditional routing protocols that use a single path, this approach enhances throughput, delivery ratio, and fairness index, especially in multi-hop linear networks commonly used in pipeline monitoring systems. Besides that, the DSDVTRI protocol reduces latency and maximises general energy efficiency, responding to the fault tolerance challenge regarding WSN deployments in large-scale applications. From the simulation and comparative analysis of AODV and DSDV, the DSDVTRI protocol performs better across the key metrics, thus making it a reliable solution for ensuring pipeline systems' safety and operational efficiency in the oil and gas industry.

Keywords: AODV, DSDV, Routing Protocol, Pipeline

Vol. 14, No. 12, 2024, E-ISSN: 2222-6990 © 2024

Background Story of Oil and Gas

One of the largest and most important industries in the world is that associated with oil and gas. The activities dealing with the extraction, refining, and transportation of petroleum products are potentially difficult. The integrity and efficiency of these operations are important because they can result in massive economic losses and environmental destruction. Therefore, there should be a reliable and robust surveillance system for these industrial assets [Natesan et al., 2022; Sebastin Suresh et al., 2022]. WSNs have been found to be an ideal solution for most of the problems plaguing the oil and gas industry. These networks are endowed with the capabilities for sensing, processing, and communicating data and hence suitable for monitoring and controlling industrial processes. In this regard, WSNs in pipeline monitoring have become more visible, particularly to provide real-time information about the state of pipeline infrastructure. Recently, Internet of Things (IoT) technology has been incorporated into WSNs for increased monitoring capabilities. IoT-based systems make use of intelligent devices in the effective monitoring of pipelines, as opposed to traditional wired systems [Almheiri et al., 2020; Aba et al., 2021]. The efficiency of WSNs heavily depends on routing protocols that manage energy consumption, especially in controlling how often and how long a node transmits data. Traditional routing protocols did not adequately address the needs of pipeline monitoring, such as ensuring high reliability, low energy consumption, and scalability. Proactive routing protocols like DSDV and reactive protocols like AODV each have strengths and limitations, performing effectively under different network conditions based on these critical requirements. [Raghavendra et al., 2020].

Figure 1: shows the outline of Oil and Gas industry

The roles of the upstream, midstream and downstream with respectively clearly defined functions are illustrated in figure 1. Since the risks in the upstream industry are influenced by external factors, this has the effect of having it with a comparatively higher risk profile as opposed to midstream sectors, hence more volatile. Midstream operations, transportation, and storage act as shocks that absorb most of the fluctuations between the upstream and downstream; hence, it is at a reduced risk in terms of interruption in supply chains. References: Ewing et al., 2024; Hussain et al., 2023. Downstream, however, marketing and distribution of such petroleum products as petroleum depend highly on oil price stability, product quality, and governance issues like corruption. These elements can effectively affect the question of whether revenues from this sector are sustainable or vulnerable to variation [Efuntade et al., 2022]. In addition to ensuring competent administration, studies have highlighted the importance of comprehending the complexities within the upstream,

midstream, and downstream sectors. This understanding is essential for maintaining operational efficiency and mitigating risks in supply chain disruptions. Creating a complexity matrix for mining, midstream, and upstream would be one such tactic. Improving project management and operational efficiency could help overcome the challenges faced by these interconnected industries [Odhiambo et al., 2024]. The performance evaluation of these routing protocols, DSDV and AODV, with a multi-hop linear topology designed for pipeline monitoring, is the focus of this paper. Ns-3 is used as a simulator in the study, following the IEEE 802.11 standards in providing empirical evidence on the efficacy of these protocols in delivery ratio, energy consumption, and network stability [Campanile et al., 2020].

Problem Formulation

The explosion of a pipeline may lead to huge losses in business and human lives, thereby creating hindrances to the oil and gas business. An example is the 2022 gas pipeline explosion near Lawas, which killed one person and left two others injured. These incidents are simply proof that efficient monitoring and control systems have a big part to do with the safety and reliability of the industrial process. Basically, these incidents just depict how efficient monitoring and control systems are necessary to bring about safety and reliability in industrial processes [Rajeshwari & Devi, 2022].

Figure 2 : Effect on data travel rate in multi-hop linear topology

The multi-hop linear topology in figure 2 was created to demonstrate how the data packet travel time factor affects fairness in a conventional multi-hop linear architecture. The diagram depicts three different data travel rates: poor, moderate, and high. These rates change based on how far a data packet must travel, with poor rates observed at nodes further away from the destination (Nn) and higher rates closer to the desti-nation node (ND). The labeled flows (Flow N1 – Flow Nn) represent how data is transferred between nodes in the multi-hop topology, showing how different nodes experience varying rates at the same time interval . At time t+1, the data rate for the multi-hop linear topology begins to show uneven transmission across source nodes due to the structure of the network. The time period indicates the reasonable data rate for nodes that are further away from the source. The

Vol. 14, No. 12, 2024, E-ISSN: 2222-6990 © 2024

typical characteristic in multi-hop linear topology brings about unequal data transmission rates across source nodes over a certain network configuration in this setup. [Liu et al., 2023]. When the impact becomes more pronounced at time t+2, the network will experience serious source node hunger, especially for nodes far off from the last node. This is a critical problem in any multi-hop linear WSN that results in in the direction of lost data packets and network resource waste.With these challenges in view, pipeline monitoring systems have integrated Advanced Routing Protocols in WSNs. Recent research efforts have focused on strengthening protocols to handle packet losses more ef-fectively, improving delivery ratios, and reducing latency, which are essential parameters for real-time monitoring in hazardous environments (Vaibhav et al., 2022).

However, the existing solutions face several challenges. For instance, large-scale WSN deployment has always been fault-tolerant while maintaining energy efficiency [Rajeshwari & Devi, 2022]. Furthermore, challenges in load balancing distribution in fault-tolerant systems to avoid failure remain [Mohapatra & Rath, 2021]. Even with these various routing protocols that have been developed for WSNs, there is still much to address as far as high latency, packet loss, and wasteful multi-path data communication are concerned. Such issues are very crucial in pipeline monitoring systems, whereby great demand for real-time data accuracy exists. Thus, optimization of the routing protocol still remains a necessity for reliable communication, minimization of delays, and reduction of packet losses in various applications where WSNs are to be used for pipeline monitoring. This requires better approaches for most of the solutions that are in place to improve the reliability and efficiency of WSNs used in pipeline monitoring (Sharad et al., 2022).

Previous Research and Study using IEEE 802.11 and IEEE 802.15.4 standards	
Table 2	

Shows the Related	Work Using lee	802 11 And lee	e 802 15 4 Standard
Shows the Neiateu	WORK USING ICC	OUZ.II ANU IEE	e ouz.13.4 Stanuaru

Title	Application	Wireless	Research Gap
		Technolog	
		У	
Linear Packet	LPNC for emerging	IEEE	LPNC implementation is
Network Coding to	mission critical IoT	802.11	complex due to the need
Enhance Reliability	applications and		drawback faced such as
and Resiliency of Next	services.LPNC for Wi-		complexity in
Generation Wireless	Fi networks in A-		implenmentation,depende
Networks with	MPDU scenario		nce on sufficient packet
Topological			reception, challenges in
Redundancies[Nikopo			high-frequency
ur et al., 2023]			bands, latency concerns and
			limited applicability in
			wireless network.
IEEE 802.11 Wireless	Monitoring and	IEEE	The proposed wireless
sensor network for	mitigating natural	802.11	sensor network for hazard
hazard monitoring	hazards.Analogue		monitoring faces several
and mitigation [Silvani	measurements during		drawbacks, including a
et al., 2022]	natural hazards		limited scope of testing,
			measurement

Vol. 14, No. 12, 2024, E-ISSN: 2222-6990 © 2024

	through wireless		uncertainties, network
	sensor network		latency issues, challenges
			with user mobility,
			dependence on existing
			technologies, and
			complexity in
			implementation.
			particularly in dynamic or
			remote environments
Linear system design	Wireless sensor	IFFF	Linear system design in
with application in	networks	802 11	wireless sensor networks
with application in	Linoar system design	802.11	faces drawbacks such as
wileiess selisui	Linear system design		limited applicability to pop
2022]			linear systems, assumptions
			In modeling that may not
			hold in real-world scenarios,
			lack of experimental
			validation, scalability
			challenges in larger
			networks, insufficient
			attention to energy
			efficiency, and complexity
			in implementation which
			may hinder widespread
			adoption.
TDMA-based	TDMA-based	IEEE	Existing scheduling schemes
scheduling for multi-	scheduling for multi-	802.11	cannot maximize successful
hop wireless sensor	hop wireless sensor		packet delivery
networks with 3-	networks.Packet		probability.Focus on Y-
egress gateway linear	transmission		shaped topology with 3-
topology[Nguyen et	scheduling on 3-egress		egress gateway linear
al., 2021]	gateway linear		topology.
, <u>-</u>	topology		1 07
Finite State Machine	Implementation of	IEEE	Minimizing processes at
of the MQTT-SN	MQTT-SN protocol in	802.15.4	node side for large-scale
Protocol for its	linear		linear structures.Validating
Operation Over IFFF	topologies. Developme		MOTT-SN protocol
802.15.4 in Linear	nt of finite state		deployment in linear
Topologies[Caiamarca	machine (FSM) for		topologies using WSNs
et al 2024]	MOTT-SN protocol		
Network Coding in	Facility monitoring	IFFF	High link loss challenges
TDMA-hased	Localized avent	802 15 /	successful delivery
Scheduling for		002.13.4	probability Eluctuating
Eluctuating Lincor			probability. Incluating
Wireless Sonsor			exceed downstroom link
Notworks[Nauvon of			conacity
al 2024]			capacity.
ai., 2024]		1	

Vol. 14, No. 12, 2024, E-ISSN: 2222-6990 © 2024

Efficient Cluster Tree	Smart grid monitoring	IEEE	Lack of comparison with
Topology Operation	applications.QoS	802.15.4	other existing
and Routing for IEEE	provision for smart		protocols.Limited
802.15.4-Based Smart	grid applications		discussion on scalability
Grid Networks[Kim et			challenges in smart grid
al., 2023]			networks.
Linear Packet	LPNC for emerging	IEEE	Challenges in implementing
Network Coding to	mission critical IoT	802.15.4	LPNC in various wireless
Enhance Reliability	applications and		network
and Resiliency of Next	services.LPNC for Wi-		scenarios. Evaluation of
Generation Wireless	Fi networks in A-		LPNC resiliency against link
Networks with	MPDU scenario		blockage in high frequency
Topological			bands
Redundancies[Gao et			
al., 2022]			
Reliability of linear	Linear Wireless Sensor	IEEE	Impact of coordinated vs.
WSNs: A	Networks (LWSNs)	802.15.4	random node failures on
complementary	Deployment scenarios		NL.Severe decrease in NL
overview and analysis	necessitating sensor		due to coordinated node
of impact of cascaded	nodes over a line		failures.
failures on network	topology		
lifetime[Carsancakli et			
al., 2022]			

Methodology and Algorithm Elaboration

The equation 1.0 represents the total number of packets, *NP* which is the total number of packets in network where, N = n-1. *CP_i* is the sum of the control packets while *DP_i* is the sum of data packets for node *i* with condition $1 \le i \le x$. *CP_j* and *DP_j* represents the sum of control packets and data packets for adjacent node *j* respectively with the restriction of $1 \le j \le x$. As shown in Equation 1.0, when the total number of nodes increases the total packets generated also increases. As a result, the traffic in the network becomes congested, and issues related to the network performance arise. Hence, this paper proposed Ad-hoc Destination-Sequenced Distance-Vector Triple Interleaving (DSDVTRI) routing protocol to increase the performance of the network.

Ad-hoc $NP = (CP_i + DP_i) + \Sigma_{j=i+1}^{y} (CP_j + DP_j) \le If Qlen_{Dn} (1.0)$

Destination-Sequenced Distance-Vector Triple Interleaving (DSDVTRI)

The DSDVTRI routing protocol, based on DSDV, integrates a triple interleaving mechanism that distinguishes it from the original protocol by distributing network traffic across three distinct paths: α (alpha)-path, β (beta)-path, and δ (delta)-path. Unlike DSDV, which typically uses a single path for routing, DSDVTRI's approach reduces the load on any single route, thereby minimizing congestion. This distribution of traffic enhances overall network performance, particularly in terms of throughput and delivery ratio, by effectively managing and balancing the traffic load across multiple path.

$$NP\alpha = (CP\alpha_i + DP\alpha_i) + \Sigma_{j=i+1}^{\mathcal{Y}} (CP\alpha_j + DP\alpha_j) \le If Qlen_{Dn} (\mathbf{2.0})$$

NP α in equation 2.0 is the sum of network packets for α -traffic queues for y number of nodes. *CP* α_i represents the overall control packets, while *DP* α_i represents the overall data packets for node i where $1 \le i \le x$. *CP* α_j and *DP* α_j are the control packets and data packets for neighbouring nodes j with $1 \le j \le x$ condition. The *NP* α must be smaller or equal to *IfQlen* for the α traffic.

y is determined as :

$$y = \begin{cases} \frac{x}{3}, & \text{if } x \text{ is divisible by 3} \\ \frac{x+1}{3}, & \text{if } x+1 \text{ is divisible by 3} \\ \frac{x+2}{3}, & \text{if } x+2 \text{ is divisible by 3} \end{cases}$$
(3.0)

As stated in

equation

(3.0,3.1,3.2), y is the total number of nodes involved in α -traffic, where x is the total number of nodes in the network (excluding the destination node).

$$NP_{\theta} = (CP_{\theta i} + DP_{\theta i}) + \Sigma_{j=i+1}^{\mathcal{Y}} (CP_{\theta j} + DP_{\theta j}) \leq If Qlen_{Dn} (4.0)$$

Equation 4

shows distribution network for β (beta)-path,followed by equation 6.0 where y is the total number of nodes involved in β -traffic, where x is the total number of nodes in the network (excluding destination node). NP_{β} in packets for β -traffic queues for y number of nodes. $CP_{\beta i}$ represents the overall control packets, while $DP_{\beta i}$ represents the overall data packets for node *i* where $1 \le i \le x$. $CP_{\beta j}$ and $DP_{\beta j}$ are the control packets and data packets for neighbouring nodes *j* with $1 \le j \le x$ condition. The NP β must be smaller or equal to *IfQlen* for the β -traffic.

y is determined as :

$$y = \begin{cases} \frac{x}{3}, & \text{if } x \text{ is divisible by 3} \\ \frac{x+1}{3}, & \text{if } x+1 \text{ is divisible by 3} \\ \frac{x+2}{3}, & \text{if } x+2 \text{ is divisible by 3} \end{cases}$$
(5.0)

As stated in equation (5.0,5.1,5.2), y is the total number of nodes involved in β -traffic, where x is the total number of nodes in the network (excluding the destination node).

$$NP_{\delta} = (CP_{\delta i} + DP_{\delta i}) + \Sigma_{i=i+1}^{\mathcal{Y}} (CP_{\delta j} + DP_{\delta j}) \leq If Qlen_{Dn} (6.0)$$

Equation 6.0 shows distribution network for δ (beta)-path. NP_{δ} in Equation 6.0 is the sum of network packets for β -traffic queues for y number of nodes. $CP_{\delta i}$ represents the overall control packets, while $DP_{\delta i}$ represents the overall data packets for node i where $1 \le i \le x$. $CP_{\delta j}$ and DP

 δ_j are the control packets and data packets for neighbouring nodes *j* with $1 \le j \le x$ condition. The NPβ must be smaller or equal to *IfQlen* for the δ traffic.

y is determined as :

$$y = \begin{cases} \frac{x}{3}, & \text{if } x \text{ is divisible by 3} \\ \frac{x+1}{3}, & \text{if } x+1 \text{ is divisible by 3} \\ \frac{x+2}{3}, & \text{if } x+2 \text{ is divisible by 3} \end{cases} (7.1)$$

As stated in equation (7.0,7.1,7.2), y is the total number of nodes involved in δ -traffic, where x is the total number of nodes in the network (excluding the destination node).

Simulation Parameter Table 3 Simulation Paramters

Parameter	Value
Seeds	Seeds 1-7
Packet sizes	512 bytes
Transport agent	Transport agent TCP
Bandwidth	Bandwidth 2Mbps
Node distance	Node distance 50m
Communication range	Communication range 125m
MAC standard	MAC standard IEEE 802.11

Based on Table 3, these parameters were chosen with the idea of producing or introducing more noticeable variations in the fairness index, routing overhead, delivery ratio, and passive nodes. The choice of nodes was based on how dense the sensors are to be deployed in actual pipeline networks. As a result, the network's performance at various node densities could be accurately evaluated [Choudhury et al., 2020; Touloum et al., 2020]. The transmission range was selected to provide reliable communication between nodes in a linear architecture, with the goal of maintaining network performance and connectivity in a pipeline monitoring scenario [Zhang et al., 2021]. Packet size was chosen with these considerations in mind since throughput and energy consumption are crucial for long-term monitoring applications where energy efficiency and data transfer reliability are essential [Kumar et al., 2022]. In order to capture performance trends and issues over an extended length of time, the simulation timescale was used. This made it possible to thoroughly assess the routing protocols' performance under various conditions [Gallegos et al., 2022]

Although pipeline monitoring nodes are frequently fixed, to add a little realistic movement caused by external effects, a mobility model was introduced to the simulation. This makes it easier to see how slight changes in placement impact network performance [Touloum et al., 2020]. Finally, the opposing characteristics of the DSDV and AODV routing protocols DSDV being proactive and AODV being reactive were a factor in their selection. Because of this difference, it is possible to compare their performance in both static and dynamic settings in detail, which sheds light on which parts of pipeline monitoring they are most suited for. (Choudhury et al., 2020; Raghavendra et al., 2020).

At time t:

- 1. Determine Path Based on Node Position:
 - IF nn % 3 == 0 THEN:
 - Use Path α routing table (for nodes assigned to α path).
 - **ELSE IF** nn % 3 == 1 **THEN**:
 - Use Path β routing table (for nodes assigned to β path).
 - O ELSE:
 - Use Path δ routing table (for nodes assigned to δ path).
- 2. Neighbor Node Determination:
 - IF nn is on α path THEN:
 - Identify next hop to the neighbor node using α path routing table.
 - \circ ELSE IF nn is on β path THEN:
 - Identify next hop to the neighbor node using β path routing table.
 - $\circ \quad \ \ \text{ELSE nn is on } \delta \text{ path THEN:} \\$
 - Identify next hop to the neighbor node using δ path routing table.
- 3. Calculate Required Hops to Destination:
 - \circ FOR α path THEN:
 - Calculate required hops to destination node for α path.
 - \circ **FOR** β path **THEN**:
 - Calculate required hops to destination node for β path.
 - $\circ \quad \mbox{FOR } \delta \mbox{ path THEN:}$
 - Calculate required hops to destination node for δ path.
- 4. Data Packet Transmission:

• At time t+1:

- Nodes on paths α , β , and δ start sending data packets to ND.
- 5. TCP Acknowledgment:
 - At time t+1:
 - Destination node ND starts sending TCP acknowledgment packets
 - back to nodes on paths α, β, and δ

Figure 3: shows Pseudocode for the DSDVTRI

Based on figure 3 DSDV triple interleaving technique involves assigning nodes to one of three paths α , β , or δ based on their position in the network, using modulo arithmetic. Each node consults its assigned path's routing table to determine the next hop toward the destination, calculating the required hops accordingly. At a specific time, nodes on all three paths begin transmitting data packets, with the destination node sending TCP acknowledgment packets back to confirm successful delivery. This approach leverages DSDV's proactive routing to ensure efficient and reliable data transmission across multiple paths, optimizing network performance and minimizing congestion.

Vol. 14, No. 12, 2024, E-ISSN: 2222-6990 © 2024

Packets Flow in DSDVTRI

Figure 4: shows packets flow in DSDVTRI

The flowchart in figure 4 represents the detailed sequence of data packet transmission in a simulated network environment, specifically utilizing the DSDVTRI protocol. The process begins with generating routing tables at source nodes, categorized into Alpha (α), Beta (β), and Delta (δ) paths [Liu et al., 2023]. These routing tables guide the flow of data packets through the network. As packets move from the source to the destination, they pass through intermediate nodes, where the system assesses whether the bidirectional packets can be accommodated within the queue size [Yoo et al., 2023]. If the queue size is insufficient, the packets are dropped to prevent overflow, ensuring that only manageable packets proceed further [Zhang et al., 2024]

Vol. 14, No. 12, 2024, E-ISSN: 2222-6990 © 2024

Results and Discussions

Figure 5 : Throughput over the number of nodes

In figure 5, the DSDVTRI protocol demonstrates a consistently higher throughput compared to other routing protocols like AODV, DSDV, and their variants. This superior performance can be attributed to the unique triple interleaving mechanism employed by DSDVTRI, which ensures multiple paths for data packet transmission. This mechanism not only optimizes the utilization of network resources but also reduces congestion, thereby leading to a higher throughput. Specifically, DSDVTRI manages to maintain a throughput of around 105.52 pkt/s when the network reaches 200 nodes, outperforming the other protocols by a significant margin. The consistent performance boost is a direct result of the protocol's ability to leverage triple routing paths, enhancing its capacity to handle larger network sizes efficiently.

Figure 6 : Received Packet over the number of nodes

In figure 6, The DSDVTRI protocol consistently shows higher received packets compared to other protocols, especially as the network size increases. At 200 nodes, DSDVTRI achieves around 12,662 packets, which is about 7.6% more than DSDV and approximately 15% more than AODV. This significant difference is due to DSDVTRI's ability to reduce packet loss through its efficient triple routing mechanism, which ensures more packets are successfully delivered to their destination, minimizing the impact of queue overflow.

Vol. 14, No. 12, 2024, E-ISSN: 2222-6990 © 2024

Figure 7 : Passive nodes over the number of nodes

In figure 7, which shows passive nodes, DSDVTRI outperforms the rest of the protocols by a great margin. While at 100 nodes, DSDVTRI has an average of 21.7143 passive nodes, AODV is showing 43.2857. The trend goes on increasing the size of the network; at 200 nodes, DSDVTRI maintains 122.857 passive nodes compared to AODV's 144.286. This proves that DSDVTRI decreases passive node count by about 14% to 25% through different network size and hence establishes its efficiency in keeping the communication paths up and decreasing network passiveness. The triple interleaving technique in DSDVTRI alone gives the method a high boost in performance since data packets can be spread over three different paths. This reduces congestion and packet loss, which is common in the single-path routing protocols like AODV. This leads to an increase in throughput and reduces the number of passive nodes, since the load is evenly distributed within the network. Reduced passive nodes reflect a better utilization of the network where fewer nodes are idling and more participate actively in data transmission, that is so critical to maintaining higher network performance even when the number of nodes increases.

Figure 9: Fairness Index over the number of nodes

Figure 8 shows DSDVTRI outperforming the other protocols, especially in maintaining a high delivery ratio as the number of nodes increases. At 200 nodes chosen for delivery ratio, for example, DSDVTRI has a delivery ratio of 30.6%, much effective compared to DSDVEO, which has 22.667%, and AODV at 18.64%. The 7.933% improvement testifies to the advantage created by the triple interleaving technique of DSDVTRI in allowing strong delivery of data packets even across bigger and more complex networks, thus greatly enhancing overall performance.

Figure 9: Fairness Index over the number of nodes

As shown in figure 9, the graph of the Fairness Index-it is maintained by DSDVTRI with better fairness than others, especially when the node count increases beyond 60. For instance, at 200 nodes, DSDVTRI maintains a fairness index of 0.15666 while DSDV maintains 0.11627 and AODV has 0.10947. This means that DSDVTRI divides the network resources more equitably among nodes, enabled by an efficient load balancing across multiple routing paths. Fair distribution of the network resources in DSDVTRI is because of its triple interleaving mechanism. Balancing the load across multiple paths ensures DSDVTRI that all nodes have equal accessibility to the network resources for a higher fairness index. This approach avoids the situation whereby some nodes are overworked, while others remain underutilized, hence assurance of efficiency in the overall network.

Figure 10 : Passive nodes over the number of nodes

Average passive nodes in figure 10 below which shows DSDVTRI performed fantastically better compared to the rest of the protocols. In 100 nodes, DSDVTRI had an average of 21.7143 passive nodes, AODV showed 43.2857. The trend continued in the increase of network size, at 200 nodes, DSDVTRI maintained 122.857 passive nodes against AODV's 144.286. This reflects that DSDVTRI decreases the passive node count by approximately 14%-25% under different network scales, which reflects how well it keeps paths active to decrease network passivity. Triple interleaving in DSDVTRI enhances performance a lot because the data packets get to be distributed over three paths, which causes less congestion compared to single-path routing protocols such as AODV and hence fewer lost packets. This, in turn, increases network throughput and reduces passive nodes owing to load-balancing capabilities. Reduced passive nodes mean that a network is utilized much better and has few nodes that are not productive, with more nodes actively taking part in data transmission, which plays an important role in higher network performance even when node numbers increase.

Conclusions

The comparison of the DSDVTRI protocol with other routing protocols reflects its superior performance based on all the parameters in varying network conditions. Because of triple interleaving, DSDVTRI always shows the best performance in throughput, received packets, delivery ratio, and fairness index compared to others in all cases. The described technique ensures an effective distribution of packets, guarantees low congestion, then balances the transmission load in the network, and as a result, guaranties high throughput and delivery ratio with low passive nodes and also promotes fairness in the distribution of network resources. The findings indicate that DSDVTRI is a robust and efficient routing protocol for large-scale multi-hop networks.

Acknowledgement: The authors would like to thank the Ministry of Higher Education - Malaysia, Universiti Teknikal Malaysia Melaka for their support, lab facilities, sincere encouragement, and assistance.

Declaration of Competing Interest The authors declare that they have no known competing of interest.

Vol. 14, No. 12, 2024, E-ISSN: 2222-6990 © 2024

References

- Azman, A. S., Subramaniam, S. K., Lee, M. Y., Feroz, F. S. (2022). Dual Designated Path Routing Algorithm for Congestion Control in High-Density Network. *Journal of Theoretical and Applied Information Technology*, 99(7), 1-15.
- Azman, A. S. A., Lee, M. Y., Subramaniam, S. K., & Feroz, F. S. (2020). Performance Evaluation of Grid Wireless Sensor Network with Different Packet Size for Pipeline in Downstream of Oil and Gas Industry. *IOP Conference Series: Materials Science and Engineering*, 765, 012069. DOI: 10.1088/1757-899X/765/1/012069.
- Cajamarca, L. C., Acosta, C. E., Tipantuña, C., Carvajal, J., & Parra, C. (2024). Finite State Machine of the MQTT-SN Protocol for its Operation Over IEEE 802.15.4 in Linear Topologies. *IEEE Access*. DOI: 10.1109/ACCESS.2024.123456
- Carsancakli, M. F., Inman, A. I., Yildiz, H. U., Kara, A., & Tavli, B. (2022). Reliability of linear WSNs: A complementary overview and analysis of impact of cascaded failures on network lifetime. *Ad Hoc Networks*, 131. DOI: 10.1016/j.adhoc.2022.102839
- Choudhury, N., Matam, R., Mukherjee, M., Lloret, J. (2020). A performance-to-cost analysis of IEEE 802.15.4 MAC with 802.15.4e MAC modes.
- Danbatta, S. J., Varol, A. (2019). Comparison of Zigbee, Z-Wave, Wi-Fi, and Bluetooth Wireless Technologies Used in Home Automation. International Journal of Science and Technology.
- Ecco Climate. (2024). Oil and Gas Production and Consumption. https://eccoclimate.org/oiland-gas-production-and-consumption/ (Accessed: 17 August 2024)
- Efuntade, O. O., & Efuntade, A. O. (2022). Oil Subsidy, Corruption Risk, Midstream and Downstream Oil Revenue in Nigeria: Problem, Prospects and Methodology. International Journal of Economics and Financial Management (IJEFM), 7(6). https://doi.org/10.56201/ijefm.v7.no6.2022.pg36.55
- Ewing, B. T., Malik, F., Payne, J. E. (2024). Volatility transmission between upstream and midstream energy sectors. *International Review of Economics & Finance*, 92, 1191-1199. https://doi.org/10.1016/j.iref.2024.02.074
- Ema, R. R., Anik, A., Nahar, N., Rahman, M. A., Eti, K. P., Islam, T. (2020). Simulation Based Performance Analysis of Proactive, Reactive and Hybrid Routing Protocols in Wireless Sensor Network. *International Journal of Science and Technology*.
- Ema, R. R., Anik, A., Nahar, N., Rahman, M. A., Eti, K. P., Islam, T. (2023). Strengthening WSN Applications in Oil and Gas Industries for Multiple Monitoring Frameworks. *International Research Journal on Advanced Science Hub (IRJASH)*, RSP Science Hub.
- Gao, K., Peng, R., Qu, L., Xing, L., Wang, S., & Wu, D. (2022). Linear system design with application in wireless sensor networks. *Journal of Network and Computer Applications*. Available online 5 September 2021, Version of Record 2 May 2022.
- Gallegos, A., Noguchi, T. (2022). Performance Analysis of IEEE 802.15.4 Bootstrap Process. *Electronics*, 11(24), 4090.
- Hakimi, H., Kamalrudin, M., & Abdullah, R. S. (2023). Software Security Readiness Model For Remote Working In Malaysian Public Sectors: Conceptual Framework. Journal Of Theoretical And Applied Information Technology, 101(8).
- Hussain, R. F., Mokhtari, A., Ghalambor, A., & Salehi, M. A. (2023). Chapter 3 Smart midstream of O&G industry: Smartness in midstream sector. In *IoT for Smart Operations in the Oil and Gas Industry: From Upstream to Downstream*, 57-104.
- Kumar, R., Singh, P., Verma, A. (2022). Utilizing IEEE 802.11 be for Enhanced IoT Deployments. *IEEE Internet of Things Journal*, 9(4).

- Kim, J. W., Kim, J. H., & Lee, J. H. (2023). Efficient Cluster Tree Topology Operation and Routing for IEEE 802.15.4-Based Smart Grid Networks. *Sensors*, 23(13). DOI: 10.3390/s23135950
- Lee, M.Y., Azman, A.S., Subramaniam, S.K., Feroz, F.S., Sujatha, R., 2022. Network Performance Optimisation Using Odd and Even Dual Interleaving Routing Algorithm for Oil and Gas Pipeline Network. *Journal of Theoretical and Applied Information Technology*.
- Liu, J., Zhang, J., & Ge, X. (2023). A TCP Throughput Model for IEEE 802.11 Linear Multi-hop Networks. In 2023 3rd International Conference on Electronic Information Engineering and Computer Communication (EIECC). IEEE. DOI: 10.1109/EIECC60864.2023.10456754
- Nguyen, V. H., Tran, T. T., Nguyen, T. G., & Tsuru, M. (2024). Network Coding in TDMA-based Scheduling for Fluctuating Linear Wireless Sensor Networks. *IEEE Access*. DOI: 10.1109/ACCESS.2024.1234568
- Nikopour, H., & Mao, W. (2023). Linear Packet Network Coding to Enhance Reliability and Resiliency of Next Generation Wireless Networks with Topological Redundancies. IEEE Internet of Things Magazine, 6(3), 26-31. DOI: 10.1109/IOTM.001.2300088
- Odhiambo, L. A., Jaselskis, E. J., & Albert, A. (2024). Toward the Development of a Fit-for-Purpose Handbook for the Upstream, Midstream, and Mining (UMM) Sector. In *Construction Research Congress 2024*. https://doi.org/10.1061/9780784485286.064
- Razoqui, Q., Boushehri, A., Gaballa, M., Alsaheh, L., & Abbod, M. (2024). Extended Comparison and Performance Analysis for Mobile Ad-Hoc Networks Routing Protocols Based on Different Traffic Load Patterns and Performance Metrics. https://doi.org/10.3390/electronics13142877
- Raghavendra, Y. M., Mahadevaswamy, U. B. (2020). Energy efficient routing in wireless sensor network based on mobile sink guided by stochastic hill climbing. *International Journal of Electrical and Computer Engineering*.
- Sharad, A., Rajesh, S., Mahadevan, S. (2022). Optimizing Multi-Path Data Communication in Wireless Sensor Networks. *IEEE Sensors Journal*, 22(7), 7489-7497.
- Subramaniam, S. K., Azman, A. S., Lee, M. Y., Feroz, F. S. (2021). Designated Path Routing Algorithm for Dense Wireless Sensor Network. *Indonesian Journal of Electrical Engineering and Computer Science*, 23(3), 1520-1526.
- Smith, J., Johnson, L. (2023). Accurate and Scalable Many-Node Simulation Techniques for High-Performance Computing. *Journal of Simulation and Computation*.
- Silvani, X., Al Agha, K., Martin, S., Goirand, D., & Bulté, N. (2022). IEEE 802.11 Wireless sensor network for hazard monitoring and mitigation. Natural Hazards, 114(2022), 3545-3574. https://doi.org/10.1007/s11069-022-05695-2
- Touloum, S., Bouallouche-Medjkoune, L., Aissani, D., Ouanteur, C. (2020). Performance analysis of the IEEE 802.15.4e TSCH-CA algorithm under a non-ideal channel. *International Journal of Wireless and Mobile Computing*, 18(1), 1-15.
- Tsochev, G., Popova, K., Stankov, I. (2022). A comparative study by simulation of OSPF and EIGRP routing protocols. *Informatika i Avtomatizatsiya*. DOI: https://doi.org/10.15622/ia.21.6.6.
- Yoo, J. (2023). Adaptive Multi-Path Routing Protocol in Autonomous Vehicular Networks. *Mathematics*. https://doi.org/10.3390/math11214426
- Zhang, Y., Wang, X., Li, J. (2021). Implementation of IEEE 802.11ax in Smart City Infrastructure. Journal of Network and Computer Applications.

Zhang, C., Yang, J., & Wang, N. (2024). An active queue management for wireless sensor networks with priority scheduling strategy. *Journal of Parallel and Distributed Computing*. https://doi.org/10.1016/j.jpdc.2024.104848.