Published Online: 24 December 2022 Vol 12, Issue 12, (2022) EISSN:2222-6990

The Quality Criteria of Pahang Fake News Model during Covid-19 Pandemic: According to Uses and Gratification Theory

Wan Hashridz Rizal bin Wan Abu Bakar¹, Nur Aulia Fahada binti Misaridin², Raja Nurul Hafizah binti Raja Ismail³, Wan Nur Ainna Waheda binti Rozali⁴

¹Faculty of Islamic Studies, Universiti Islam Pahang Sultan Ahmad Shah (UnIPSAS), ²Faculty of Management and Informatics, Universiti Islam Pahang Sultan Ahmad Shah (UnIPSAS),
 ³Faculty of Islamic Studies, Universiti Islam Pahang Sultan Ahmad Shah (UnIPSAS), ⁴Faculty of Islamic Studies, Universiti Islam Pahang Sultan Ahmad Shah (UnIPSAS)
 Email: rizal@unipsas.edu.my

Abstract

Fake news spread during the pandemic Covid-19 has resulted in an excessive spread of fake news, which leads the public to believe in something that is not true and also spreads hoaxes among them. The researcher investigates which items are valid or not in this study by using five variables from the uses and gratification theory. Based on the non-probability sampling method, this quantitative study was conducted among Pahang citizen, and the data collected came from as many as 130 respondents. Based on the validity of our measure, the data revealed that Cronbach's Alpha for all variables is greater than 0.90. The KMO index is also greater than 0.60, indicating high convergent validity.

Keywords: Quality, Gratification, Fake News, Model.

Introduction

Coronavirus disease 19 (COVID-19) is a highly contagious and pathogenic viral infection caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The virus first appeared in Wuhan, China, and quickly spread throughout the world. (Shereen et al., 2020). The world has seen an increase in the spread of so-called fake news, particularly since the beginning of 2020, when COVID-19 became a major issue on the global agenda. It is claimed that the government's actions, corrective measures, recommendations, and so on are to blame for a large amount of inaccurate information (Fernandez-Torres et al., 2021). There are two issues with information sharing on social media that exaggerate the situation in Malaysia and many other affected countries: first, the public, authorities, or third parties sharing the personal information of patients and their families, and second, the sharing of fake news or false information (Yusof et al., 2020). 270 investigation files pertaining to false information associated with Covid-19 had been opened by the police and the Malaysian Communication and Multimedia Commission. 133 cases in total are still being looked into.19 of the 35

Vol. 12, No. 12, 2022, E-ISSN: 2222-6990 © 2022

defendants charged in court entered guilty pleas, and 12 others received warning letters. The Star, 2020

Literature Review

Study by Apuke & Omar (2021), they develop a conceptual framework that integrates the theories of uses and gratification, social networking site (SNS) dependence, and social influence to comprehend the variables that influence the spread of false information about COVID-19. Previous studies by Ibanez-Sanchez et al (2022) have reported the findings of two studies that combined quantitative and qualitative techniques revealed that perceived entertainment and, to a lesser extent, perceived interactivity play an important role in the playability of AR filters with entertainment Cronbach's Alpha value is 0.925.

Research by Alhumaid *et al* (2022) show the reason for combining these two theories is that U&G provides accurate information and a thorough understanding of use, whereas TAM theory is well-established in several technical implementations. In this study, Cronbach's Alpha for socialisation is 0.792.

Methodology

This study aims to measure the quality criteria of Pahang fake news model during covid-19 endemic according to uses and gratification theory. In this study, the researcher used a crosssectional survey design with this technique, the researchers could measure the study subject's outcomes and exposures simultaneously and cost effectively (Wang et al., 2020). We are assuring the respondent regarding the anonymity and confidentiality of the study in order to control for common method bias (Chang et al., 2010). This causes respondents to be unsure about how to respond and increases the likelihood that they will be influenced by their natural response tendency (Eichhorn, 2014). This questionnaire used five Likert Scales. Things that have a lot of meaning are grouped together on this scale. For instance, a score of 1 represents strongly disagree, a score of 2 disagree, a score of 3 neutrality, a score of 4 agree, and a score of 5 strongly agree. The probability sampling method was used in this study. We selected this sampling method because we do not have a sampling frame. According to G*Power analysis, specifically for F-Test in Linear Multiple Regression: Fixed model, R2 deviation from zero, suggested sample size minimum is 92, However, in this study, we were able to obtain 130 respondents. To distribute the questionnaire, we are using Google Forms. Following that, we complete the questionnaire in an excel worksheet in order to filter out the invalid data.

Data Analysis

To ensure the validity of our measures, factor analysis was conducted (see Table 3). Principal components analysis followed by varimax rotation was used for factor extraction. The rule used to determine the number of factors was eigenvalue greater than 1 criterion (Hair *et al.*, 1998). To test the appropriateness of the data set for using factorial analysis, Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy was used. Field (2013) recommended a KMO index of .0.6 as suitable for factor analysis. The final results of the factorial analysis are presented in Table 3. Each item loaded strongly (.0.5) on only one of the factors which indicates high convergent validity, while all other factor loadings for these items remained below the 0.34 criteria recommended by Churchill (1979) as an indication of strong discriminant validity. Research has set 0.60–0.70 as the minimum acceptance level (Nunnally and Bernstein, 1994; Hair et al., 1998). For each factor, Cronbach's Alpha was above the 0.7

Vol. 12, No. 12, 2022, E-ISSN: 2222-6990 © 2022

and because of the high level of the coefficients, it was considered that the scales were relevant and reliable (Peterson, 1994).

Table 1
Factor Retention
Total Variance Explained

		ce Explain		Extract	ion Sums	of Squared	dRotatio	on Sums	of Squared
	Initial	Eigenvalu	es	Loading		•	Loadin		•
		_	fCumulative	_	-	fCumulativ		_	ofCumulative
Facto	rTotal	Variance	%	Total	Variance	%	Total	Variance	%
1	11.505	539.673	39.673	11.255	38.812	38.812	3.959	13.653	13.653
2	4.920	16.964	56.637	4.680	16.138	54.950	3.909	13.478	27.131
3	2.374	8.188	64.824	2.123	7.321	62.271	3.797	13.093	40.223
4	1.515	5.223	70.047	1.279	4.409	66.680	3.552	12.249	52.473
5	1.206	4.160	74.207	.912	3.146	69.826	3.545	12.223	64.696
6	1.055	3.638	77.845	.819	2.823	72.648	2.306	7.953	72.648
7	.871	3.005	80.850						
8	.708	2.442	83.293						
9	.655	2.260	85.552						
10	.548	1.888	87.440						
11	.462	1.592	89.033						
12	.365	1.258	90.291						
13	.346	1.193	91.484						
14	.315	1.086	92.570						
15	.286	.988	93.558						
16	.239	.825	94.383						
17	.232	.800	95.183						
18	.207	.715	95.898						
19	.188	.647	96.545						
20	.174	.600	97.145						
21	.155	.535	97.680						
22	.131	.452	98.132						
23	.118	.408	98.540						
24	.111	.382	98.922						
25	.098	.337	99.259						
26	.074	.256	99.516						
27	.067	.232	99.747						
28	.038	.131	99.878						
29	.035	.122	100.000						

Vol. 12, No. 12, 2022, E-ISSN: 2222-6990 © 2022

Table 2
Cross Loadings

	1	2	3	4	5	6
Fns3	.826	.125	032	.178	.171	.175
Fns1	.819	.128	.031	.186	.176	.057
Fns2	.786	.145	.043	.193	.185	.005
Fns4	.751	.197	060	.199	.067	.312
Fns5	.708	.203	053	.197	.079	.301
lns1	.105	.827	.242	.025	.119	.150
Ins3	.174	.823	.344	.079	.134	.111
Ins4	.177	.783	.313	.095	.224	.015
Ins5	.203	.754	.334	.139	.064	.075
Ins2	.243	.690	.258	.084	.187	.170
Alt2	084	.313	.819	018	.160	.003
Alt4	.015	.232	.810	033	.220	.070
Alt3	034	.225	.792	.038	.237	002
Alt1	120	.315	.780	075	.127	.048
Alt5	.156	.236	.587	.041	.154	.252
Ent2	.287	.026	038	.864	.128	.239
Ent1	.283	.069	044	.833	.129	.291
Ent4	.234	.118	.003	.810	.320	.204
Ent3	.190	.132	.017	.726	.369	.153
S3	.165	.196	.210	.185	.818	.173
S5	.190	.177	.204	.253	.723	.212
S1	.192	.142	.216	.219	.683	.266
S4	.082	.111	.438	.193	.668	.015
S2	.187	.139	.195	.169	.591	.254
Sp4	.306	.111	.034	.302	.258	.731
Sp2	.299	.108	.211	.399	.242	.649
Sp3	.275	.101	.081	.279	.309	.626
Sp1	.085	.327	.126	.368	.247	.593

Vol. 12, No. 12, 2022, E-ISSN: 2222-6990 © 2022

Table 3
Results of the factor analysis

Variable	Items	Factor loading	Cronbach's Alpha	KMO
	1	.780		.867
	2	.819		
Altruism	3	.792	.912	
	4	.810		
	5	.587		
	1	.827		
	2	.690	.940	.867
Instant ne	ws ₃	.823		
sharing	4	.783		
	5	.754		
	1	.593		.867
	2	.649		
Self-promotion	3	.626	.904	
	4	.731		
	1	.683		
	2	.591		.867
Socialisation	3	.818	.910	
	4	.668		
	5	.723		
	1	.833		.867
	2	.864		
Entertainment	3	.726	.948	
	4	.810		
	1	.819		
	2	.786		.867
Fake news sharir	ng 3	.826	.924	
	4	.751		
	5	.708		

Discussion

As explained in the literature review section, there are several previous studies that also used uses and gratification theory variables and all of them indicates the variables high convergent

Vol. 12, No. 12, 2022, E-ISSN: 2222-6990 © 2022

validity. The findings of this study have proven that all the five variable are valid. These findings also prove that uses and gratification theory are valid. This findings, however need to be examined carefully because there are some areas that need to be improved especially from the point of view of sampling. Since this sampling uses non-probability sampling, then the findings of this study cannot be generalized to the entire population.

Acknowledgments

This research is supported by grants from the Sultan Ahmad Shah Pahang Islamic University (UnIPSAS) (Project No. RUG-KUIPSAS-2021-04).

References

- Alhumaid, K., Alnazzawi, N., Akour, I., Khasoneh, O., Alfaisal, R., & Salloum, S. (2022). An integrated model for the usage and acceptance of stickers in WhatsApp through SEM-ANN approach. *International Journal of Data and Network Science*, *6*(4), 1261–1272.
- Apuke, O. D., & Omar, B. (2021). User motivation in fake news sharing during the COVID-19 pandemic: an application of the uses and gratification theory. *Online Information Review*. https://doi.org/10.1108/OIR-03-2020-0116
- Chang, S.-J., Van Witteloostuijn, A., & Eden, L. (2010). From the editors: Common method variance in international business research. Springer.
- Eichhorn, B. R. (2014). Common method variance techniques. *Cleveland State University, Department of Operations & Supply Chain Management. Cleveland, OH: SAS Institute Inc, 1*(11).
- Fernandez-Torres, M. J., Almansa-Martinez, A., & Chamizo-Sanchez, R. (2021). Infodemic and fake news in spain during the COVID-19 pandemic. *International Journal of Environmental Research and Public Health*. https://doi.org/10.3390/ijerph18041781
- Field, A. (2013). Discovering statistics using IBM SPSS statistics. sage.
- Ha, S., & Stoel, L. (2009). Consumer e-shopping acceptance: Antecedents in a technology acceptance model. *Journal of Business Research*, 62(5), 565–571. https://doi.org/10.1016/j.jbusres.2008.06.016
- Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. In *Journal of Advanced Research*. https://doi.org/10.1016/j.jare.2020.03.005
- Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., & Xiong, Y. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus—infected pneumonia in Wuhan, China. *Jama*, 323(11), 1061–1069.
- Yusof, A. N. M., Muuti, M. Z., Ariffin, L. A., & Tan, M. K. M. (2020). Sharing Information on COVID-19: the ethical challenges in the Malaysian setting. *Asian Bioethics Review*, 12(3), 349–361. https://doi.org/10.1007/s41649-020-00132-4